Resolution in Super-Resolution

Ian Dobbie Micron Oxford ian.dobbie@bioch.ox.ac.uk

Why do Super-Resolution?

Because

• we want/require higher resolution.

- ...we want pretty pictures
- ... referees ask for them
- ...bosses ask for them

Expected resolution

Expected resolution				
	XY	Z	volume (fl)	relative volume
Widefield	220	550	0.02662	1
SIM	110	270	0.003267	0.122727273
STED	40	550	0.00088	0.033057851
STORM	20	50	0.00002	0.000751315

Realistic Resolution

Realistic resolution				
	XY	Z	volume (fl)	relative volume
Widefield	220	550	0.02662	1
SIM	110	270	0.003267	0.122727273
STED	80	550	0.00352	0.132231405
STORM	50	100	0.00025	0.009391435

SIM Resolution

- NA and hence stripe width
- Stripe contrast
- Signal to noise

STED Resolution

- Depletion beam power
- Probably gSTED, complicated balance between power and gating
- Signal to noise

Localisation imaging Resolution

- Photons per localisation
- PSF size
- Labelling density
- Overlapping fitting or rejection.
- Signal to noise

Microtubules in Drosophila macrophages

SIM: maximum intensity projection of two 125 nm z-sections

Primary antibody anti α tubulin, secondary antibody coupled to Alexa Fluor 488

Measuring Resolution

- Line widths of sub resolution objects (eg Microtubules)
- Fall off in intensity with frequency in Fourier Transforms

Microtubule widths

Representative single microtubules with Gaussian fits

Fourier Transforms to Assess Resolution

Widefield

Deconvolved Widefield

Fourier Transforms to Assess Resolution

FFT of Widefield FTs of Microtubule images at equivalent scale

Radial Integrals of FTs

Fourier Transforms to Assess Resolution

FTs of Microtubule images at equivalent scale

Radial Integrals of FTs

Localisation precision by Fourier ring correlation

Going beyond the image resolution

Centriol, imaging

Line profiles from different proteins

Simulations of 2 Gaussian peaks

Simulated and experimental results

Results of 2-peak fits

Acknowledgements

<u>Micron</u>

Eva Wegel

Raff lab

Jordan Raff

Alain Wainman

Saroj Saurya

Wolfson Imaging Centre, Oxford

Christ Lagerholm

Christian Eggeling