# Resolution in SuperResolution 

Ian Dobbie<br>Micron Oxford<br>ian.dobbie@bioch.ox.ac.uk

## Why do Super-Resolution?

## Because ....

- we want/require higher resolution.
- ...we want pretty pictures
- ...referees ask for them
- ...bosses ask for them ....


## Expected resolution

$\left.$| Expected resolution |  |  |  |  |
| :--- | ---: | ---: | ---: | :--- |
|  | XY | $Z$ |  | volume (fl) | | relative |
| :--- |
| volume | \right\rvert\,-1.

## Realistic Resolution

| Realistic resolution |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | XY | Z | volume (fl) | relative volume |
| Widefield | 220 | 550 | 0.02662 | 1 |
| SIM | 110 | 270 | 0.003267 | 0.122727273 |
| STED | 80 | 550 | 0.00352 | 0.132231405 |
| STORM | 50 | 100 | 0.00025 | 0.009391435 |

## SIM Resolution

- NA and hence stripe width
- Stripe contrast
- Signal to noise


## STED Resolution

- Depletion beam power
- Probably gSTED, complicated balance between power and gating
- Signal to noise


# Localisation imaging Resolution 

- Photons per localisation
- PSF size
- Labelling density
- Overlapping fitting or rejection.
- Signal to noise


## Microtubules in Drosophila macrophages

SIM


STED



SIM: maximum intensity projection
of two 125 nm z-sections

Primary antibody anti $\alpha$ tubulin, secondary antibody coupled to Alexa Fluor 488

## Measuring Resolution

- Line widths of sub resolution objects (eg Microtubules)
- Fall off in intensity with frequency in Fourier Transforms


## Microtubule widths



FWHM
SIM $\quad 108 \pm 5 \mathrm{~nm}$ STED $\quad 63 \pm 20 \mathrm{~nm}$ dSTORM $42 \pm 4 \mathrm{~nm}$ ( $\mathrm{n}>\mathrm{l} 0$ )

Representative single microtubules with Gaussian fits

## Fourier Transforms to Assess Resolution



Widefield


Deconvolved Widefield

# Fourier Transforms to Assess Resolution 




FFT of Widefield

## FFT of deconvolved

 WidefieldFTs of Microtubule images at equivalent scale

## Radial Integrals of FTs



# Fourier Transforms to Assess Resolution 

WF SIM STED<br>dSTORM

FTs of Microtubule images at equivalent scale

## Radial Integrals of FTs



## Localisation precision by Fourier ring correlation



# Going beyond the image resolution 



Centriol, imaging

# Line profiles from different proteins 

Representitive line profiles through centriols


## Simulations of 2 Gaussian peaks



## Simulated and

experimental results
Full width Half Maximum of fits


## Results of 2-peak fits



## Acknowledgements

Micron
Eva Wegel
Wolfson Imaging Centre, Oxford
Raff labJordan Raff
Christ Lagerholm
Christian Eggeling
Alain Wainman
Saroj Saurya

