The Power of SIM

How Structured Illumination improves not only resolution ...

& how it is realized in OMX system

Comparison with other SR methods (Pros & Cons)

3D structured illumination microscopy of a mouse cell nucleus

lothar.schermelleh@bioch.ox.ac.uk

Super-resolution fluorescence microscopy

- Sensitivity
- Non-invasive (in situ & in vivo)
- Multi-dimension $(x, y, z, \lambda, t,...)$
- Relative localisation & dynamics
- Single cell' to "high throughput"

Spatial resolution is diffraction limited!

Magnification alone does not give more details!

wide-field image...

lothar.schermelleh@bioch.ox.ac.uk

...warmup:

"What determines the resolution of an optical microscope ?"

"... what objective would you take..."

"... a bit more difficult...?"

What's the difference in brightness ?

"... what objective would you take..."

Numerical aperture determines ...

Brightness $F_{epi} = 10^4 \text{ NA}^4 / \text{Mag}^2$ (epifluorescence)Lateral Resolution $d_{x,y} = 0.61 \lambda / \text{NA}$ (200-300 nm)Axial Resolution $d_z = 2\lambda / \text{NA}^2$ (500-700 nm)

Only applies under optimal conditions! BUT ...

spherical aberrations chromatic aberrations straylight out-of-focus blur detector noise

Effective resolution is worse! (max. 250 nm lateral and \leq 1 µm axial)

...improved to some extent by confocal imaging or deconvolution

The Power of SIM

How Structured Illumination improves not only resolution ...

& how it is realized in OMX system

Comparison with other SR methods (Pros & Cons)

3D structured illumination microscopy

Superresolution microscopy - three major concepts

Resolving power of commercial super-resolution systems

3D-SIM resolves ~8-fold smaller volumes than conventional microscopy

Not only resolution matters,...

What could this be?

3D information (z-resolution, optical sectioning, imaging depth)

Not only resolution matters, but also context (II)

To understand the game you need to see the player move

Temporal information (live cell imaging)

How does SIM work?

The basic principle: Abbe's view

http://de.wikipedia.org/wiki/Ernst_Abbe

The basic principle: Abbe's view

The basic principle: Abbe's view

Fourier transformation in a nutshell

(a.k.a. Fourier space, reciprocal space) Fourier Transform Inverse Fourier Transform

Real space (xy)

Alternative representation of information Low-resolution: near the origin High-resolution: farther out kx, ky: Spatial frequencies, periods/µm

Frequency space (k_x, k_y)

Image = superposed periodicities

Inverse

Real space (xy)

Frequency space (k_x, k_y) (a.k.a. Fourier space, reciprocal space)

Alternative representation of information Low-resolution: near the origin High-resolution: farther out kx, ky: Spatial frequencies, periods/µm

Image = superposed periodicities

Real space (xy)

Fourier Transform Inverse Fourier Transform

Frequency space (k_x, k_y) (a.k.a. Fourier space, reciprocal space)

Alternative representation of information Low-resolution: near the origin High-resolution: farther out kx, ky: Spatial frequencies, periods/µm

Frequency support in a wide-field microscope

Real space (xy)

Fourier Transform Inverse Fourier Transform Frequency space (k_x, k_y) (a.k.a. Fourier space, reciprocal space)

observable region (limited by NA & λ)

Frequency support in a wide-field microscope

Wide-field image (= real object convolved with PSF)

Wide-field frequency space (= all frequencies multiplied with OTF)

Point spread function PSF (orthogonal, x-z)

Optical transfer function OTF (orthogonal, k_x,-k_z)

Frequency support in a wide-field microscope

Wide-field image (= real object convolved with PSF)

Wide-field frequency space (= all frequencies multiplied with OTF)

SIM principle: Moiré interference

unknown structure

Fourier transform of the measured image

 $F\{f \times g\} = F\{f\} \otimes F\{g\} \qquad \qquad F\{f\} = F\{f \times g\} \otimes^{-1} F\{g\}$

known illumination function

How to generate an illumination pattern in a microscope?

OMX 3D-SIM microscope system

Doubling frequency support in x-y and z

Doubling frequency support in x-y and z

for details see Gustafsson et al. (2008), Biophys J 94

3D-SIM: How does it work in practice?

Raw SI data

Tubulin in Drosophila macrophage

3D-SIM: How does it work in practice?

Tubulin in Drosophila macrophage

Doubled frequency support = 2-fold resolution in xy and z

Doubled frequency support = 2-fold resolution in xy and z

3D optical sectioning capacity

3D SIM example: Prophase

Lamin B DAPI

3D volume rendering

3D SIM imaging of chromatin

3D SIM imaging of chromatin

Schermelleh, Carlton et al. (2008), Science 320

3D-SIM resolves chromatin domains and interchromatin channels

Mouse C2C12 cells

Schermelleh, Carlton et al. (2008), Science 320

Compartmentalisation of the 3D nuclear space

Η [μm]

Active marker are constrained to chromatin domain boundaries

Mouse C127 cell

Markaki et al., 2011, Cold Spring Harb Perspect Biol, 75

Super-resolution topology inactive X-chromosome

3D-SIM

Smeets et al. (2014), Epigenetics & Chromatin

Markaki et al., (2013) Methods Mol Biol

Xist RNA forms distinct domains within the Barr Body Evidence for multimerisation (3-10 Xist RNAs/focus)

Can we go live?

Live cell 3D-SIM with OMX Blaze

Inferometric pattern generation + sCMOS cameras \rightarrow 10 x faster imaging

H2B-GFP (unfixed)

RecA-GFP (E.coli)

7 µm z-stack (56 sections, 5 ms exposure)

Christian Lesterlin (D. Sherratt Lab)

Live cell 3D super-resolution imaging of replication sites

10 s / frame (5 μ m z-stack = 600 images / frame)

max. projection

3D-SIM, just another tool in the repertoire ?

It's not that simple!

The untold story

SI reconstruction artifacts

SI reconstruction artifacts

Bleaching, Drift or vibrations Moving particles (locally constrained) Low contrast-to-noise, Low modulation contrast Spherical aberration, Refractive index mismatch

SI reconstruction artifacts

Quality control by Fourier analysis

Balance between (modulation) contrast and bleaching

Discrete structures Restricted z-hight, low background

Tolerant to low intensities >1.000 dynamic range (EMCCD/sCMOS)

Complex structures Extended z-hight, out-of-focus blur contribution

High intensities required >12.000 dynamic range (CCD) >40.000 (EMCCD)

3D-SIM workflow: quality is paramount !!!

Labelling

- Dyes (spectra, photo-stability)
- Labelling method (FPs, IF, FISH,....)
- Labelling specificity (antibodies)
- Signal-to-noise / background

Microscope

- Mechanical stability
- Photon efficiency
- Modulation contrast / calibration
- Camera: (EM)CCD / sCMOS

Dataset x, y, z, λ ,(t)

Sample

- Optical quality (coverslip, cleanness)
- Refractive index mismatch
- Embedding medium, RI immersion
- Imaging depth

Postprocessing

- PSF/OTF (λ -, depth-, RI-dependent)
- Channel alignment
- Quality control

Quantitative Analysis

- Quality control
- Co-localisation
- Segmentation
 - Distances

3D-SIM - pros & cons

- + Multi-color with standard dyes
- + Lateral and axial resolution improvement
- + 3D optical sectioning with enhanced contrast
- + Energy load / photodamage lower than other SR-techniques
- + Relative large **imaging depth** (few 10 µm, w/ Silicon)
- + Sensitivity and speed (OMX Blaze) → live cell imaging
- Only moderate lateral resolution improvement
- Mathematical reconstruction → artifacts
- High requirements on sample quality and system calibration

Context

Versatility

Challenges

Super-resolution techniques to surpass the diffraction limit

± 20 nm (xy localisation precision); ± 50 nm (structural resolution)

Trade-offs in super-resolution microscopy (no free lunch !!)

Spatial resolution is only part of the equation!

Thanks to Jürgen Neumann, Lin Shao, Julio Mateo Langerak for sharing slides