LECTURE 9 Advanced Widefield Microscopy Ilan Davis, November 2014

- Image formation and airy rings
- •Beads and spherical aberration
- How deconvolution works
- •Design of a modern widefield digital microscope
- •OMX fast simultaneous live and 3DSIM
- •Adaptive Optics Correcting Spherical aberration
- •Bespoke microscope design pros and cons
- •Bespoke microscope principles and examples

Agard and Sedat, Nature 1983

http://www.msg.ucsf.edu/agard/Publications/9-Agard-Nature-83.pdf

Widefield Fluorescence microscopy (Olympus + Sedat/Agard DeltaVision)

Widefield deconvolution the most sensitive modality - but sometimes cannot be used

Image formation

Bead slide

Surface of slide

Tetraspeck beads: chromatic registration DAPI/FITC/Rhodamine/Cy5

Beads (PS Spec): Single fluorochrome Brighter -better for generating point spread functions for deconvolution

Inspec Intensity beads: Measure dynamic range

Affects of deep imaging (90 μ m) and collar settings on spherical aberration and psf of 60X/NA1.2w

Special objectives from Olympus

- •Water immersion x60psf NA1.2
- •Silicon immersion objective x60SI NA1.3
- •Multiphoton lens. Long working distance, highly corrected in IR light

XLPN25XSVMP

http://www.olympusamerica.com/files/seg_bio/olympus_specialty_objectives.pdf

How does Widefield Deconvolution Work?

(restoring out of focus light to its point of origin)

Before Deconvolution

After Deconvolution

tauGFP (microtubules) in a *Drosophila* oocyte

Richard Parton

Tuesday, 11 November 14

Before Deconvolution

After Deconvolution

Tuesday, 11 November 14

Ilan Davis, 2000

Ilan Davis, 2000

Deconvolution

Calculations done in Fourier (frequency) space not XYZ space. Uses Fast Fourier Transforms - much faster algorithm (developed in the 1960s) Psf is converted to optical transfer function (only information in X and Z) Several methods that vary in their implementation

Increase in resolution (XY and Z) after deconvolution

Types of Deconvolution

- •No neighbour, nearest neighbour poor substitute
- •2D deconvolution Not as good
- •3D constrained iterative approaches
- Sedat/Agard ; Hoygens ; blind deconvolution

New methods (Sedat)

•Pupal functions (used to sharpen Hubble telescope) include information in otf in X, Y and Z and phase. Phase retrieval

Myopic deconvolution

Reminder

How do fluorescence microscopes work?

Filter cubes

http://www.chroma.com/pdf/handbook4.pdf

Elements that make up the widefield fluorescence microscope (Based on design by John Sedat and David Agard) IR (heat) filter Excitation Shutter

Tuesday, 11 November 14

Problem: the design of all conventional microscope stands

Tuesday, 11 November 14

How can we improve the basic design of widefield microscopes?

How can we improve the basic design of widefield microscopes?

By dispensing with the normal microscope stand and building your own microscope from optical components on a breadboard

The solution -build your own bespoke microscope

Mark Leake's Slimfield TIRF microscope (Biophysics prize)

Bespoke Microscopes

Why bother?

Bespoke Microscopes

Why bother?

Specific applications -better than commercial microscopes

Flexibility

Cost

Popular bespoke microscope

Multiphoton for neuroscience work

Bespoke Microscopes

- Why NOT to bother?
- Salary of physicist/engineer required
- Long building time required (it's hard)
- •Not supported by a company (repairs are costly and lengthy)
- •Not always easy to use by biologists

Example of Bespoke Microscopes

OMX-T microscope Designed and built by John Sedat and Dave Agard, UCSF

Live PALM microscope Designed and built by Stephan Uphoff and Achillefs Kapanidis, Micron Oxford

WOSM Designed and built by Nick Carter and Rob Cross, Warwick University

Openspim Designed and built by Pavel Tamacek and his team at Dresden MPI

Holographic microscope Irwin Said and Richard Berry, Micron Oxford

Objective lens and holder

Objective lens and holder

Tuesday, 11 November 14

Tuesday, 11 November 14

Electronics

Electronics

Timing board TTL outputs

Computer (normally a PC)

Optics Posts, flip mirrors, dichroics lenses, filter wheels, shutters, fibres, AOTF

Objective lens
The basic ingredients

Electronics

Timing board TTL outputs

Computer (normally a PC)

Optics Posts, flip mirrors, dichroics lenses, filter wheels, shutters, fibres, AOTF

Lasers

Tuesday, 11 November 14

Objective lens

Software options

- Lab view
- Micromanager
- DIY: SDKs C++, Python, Visual basic

Lab view example

but we'll fix it. File Edit Operate Tools Browse Window Help Temp 13pt Application Font Lo 🗟 🗗 s. ହ æ Generate Random Values.VI 5 🖣 True 🔻 200 Thermometer 100-> 50 -MX Manual Switch Mean Waveform Chart

Micromanager http://valelab.ucsf.edu/~MM/MMwiki/

µManager

THE OPEN BOURCE MICROSCOPY BOFTWARE

Some rules of thumb

- Clean and dust free environment
- Oscilloscope and soldering iron
- Good tools and spare parts
- Important to think about user interface
- Important to think about continuity of the project and workflow of experiments
- Important to think about data analysis

Justification for Bespoke Systems

- Often necessary for specific specialised problems.
- Easily optimised for several parameters, speed, sensitivity etc...
- Can provide extremely flexible systems

Justification for Bespoke Systems

- Often necessary for specific specialised problems.
- Easily optimised for several parameters, speed, sensitivity etc...
- Can provide extremely flexible systems

BUT think hard as it is likely to be harder, longer and more expensive than at first thought.

How expensive is it?

Building costs

Hardware ~£100-250k

Salaries 1-3 years (~£50-£150)

Total cost ~£150-350k

How expensive is it?

Building costs

Hardware ~£100-250k

Salaries 1-3 years (~£50-£150)

Total cost ~£150-350k

Commercial OMX system ~£750k

David Agard

John Sedat and Ian Dobbie

OMX - Redesigning widefield microscopy from scratch

Metal block with internal sculpturing That absorbs stray light.

XYZ nanomover

OMX (John Sedat, David Agard and Mats Gustafsson)

Precisely machined Metal block with internal sculpturing That absorbs stray light Maximized emission light efficiency

OMX (John Sedat, David Agard and Mats Gustafsson)

Precisely machined Metal block with internal sculpturing That absorbs stray light Maximized emission light efficiency

4 laser excitation lines 4 simultaneous acquisition lines CCDs

OMX (John Sedat, David Agard and Mats Gustafsson)

Precisely machined Metal block with internal sculpturing That absorbs stray light Maximized emission light efficiency

4 laser excitation lines 4 simultaneous acquisition lines CCDs

We have the second replica of the prototype instrument - 30 manufactured so far worlwide.

Resolution limit -500nm light is approx 250nm in XY and 750nm in Z

How can we overcome this limit long standing limit?

Structured Illumination

Surpassing the lateral resolution limit by a factor of two using

structured illumination. Journal of microscopy **Gustafsson**, **G.L.**, (2000) 198, 82.

http://www.blackwell-synergy.com/links/doi/10.1046/j.1365-2818.2000.00710.x

Resolution extension through Moire effect

Structured Illumination

Surpassing the lateral resolution limit by a factor of two using

structured illumination. Journal of microscopy **Gustafsson, G.L.**, (2000) 198, 82.

http://www.blackwell-synergy.com/links/doi/10.1046/j.1365-2818.2000.00710.x

Resolution extension through Moire effect

More tomorrow from Lothar

Live multidimensional imaging on OMX

Development 137, 169-176 (2010) doi:10.1242/dev.044867

Distinguishing direct from indirect roles for *bicoid* mRNA localization factors

Timothy T. Weil^{1,2,3}, Despina Xanthakis¹, Richard Parton³, Ian Dobbie³, Catherine Rabouille¹, Elizabeth R. Gavis^{2,*} and Ilan Davis³

LETTERS

Drosophila patterning is established by differential association of mRNAs with P bodies

Timothy T. Weil^{1,5}, Richard M. Parton^{1,5}, Bram Herpers^{2,6}, Jan Soetaert^{1,6}, Tineke Veenendaal³, Despina Xanthakis^{2,3}, Ian M. Dobbie¹, James M. Halstead¹, Rippei Hayashi⁴, Catherine Rabouille^{2,3,7} and Ilan Davis^{1,7}

NATURE CELL BIOLOGY VOLUME 14 | NUMBER 12 | DECEMBER 2012

3D-SIM of P bodies assocated with RNA

nature

cell biology

© 2012 Macmillan Publishers Limited. All rights reserved.

THE FUTURE: 3D SIM live on V3-blaze

3D Structured Illumination

Conventional Widefield deconvolution

MT: Jupiter-GFP - captured at API. (1fps, 30 time points)

Parton, Goodwin, Atkins

THE FUTURE: 3D SIM live on V3-blaze

3D Structured Illumination

Conventional Widefield deconvolution

MT: Jupiter-GFP - captured at API. (1fps, 30 time points)

Parton, Goodwin, Atkins

Adaptive Optics Zam K, Hanser B, Gustafsson MGL, Agard DA, Sedat JW. Computational adaptive optics for live three-dimensional biological imaging. Proc. Natl. Acad. Sci. USA 98: 3790-3795, 2000.

From Thorlabs

Adaptive Optics Kits

- Kit Includes Deformable Mirror, Shack-Hartmann Wavefront Sensor, and All Necessary Optics / Hardware
- Closed-Loop Operation via Stand-Alone Control Software
- Out-of-Box Functionality

Deformable Mirror

The hard part - algorithms for shaping the deformable mirror

Martin Booth - Engineering / CNSB, Oxford

Further development: OMX-T

Rainer Kauffman Based on John Sedat's and Ian Dobbie design

Cockpit - from John Sedat

Home built PALM / DSTORM

Stephan Uphoff and Achillefs Kapanidis

Half way houses

http://wosmic.org

Nick Carter and Rob Cross

3D printer

http://airwolf3d.com/about-us/

Openspim

http://openspim.org/Welcome_to_the_OpenSPIM_Wiki

SPIM Farm

openspim			Search Go Search
ontont	People		Page Discussion View source Histo
Parts list		Pavel Tomancak	Research Group Leader d at the MPI-CBG in Dresden. Provides ideas, concep
Assembly			research questions and funding.
Operation			
Prequently Asked Questions	TEM		
Gallery		In Huisken	Received Group Landard at the MRL/R/C is Presiden
People		Jan Huisken	Research Group ceasers at the Princos in pressen.
Downloads			
Recent changes			
xolloc			
What links here		Peter Gabriel Pitrone	Microscow technician in the Tomancak Jahre. Designed and built the OpenS
Related changes	at a	Peter Gabriel Pitrone	Preroscopy becameran in the romancak ratio, besigned and built the opena-
Special pages	and and		
Printable version	al and		
Permanent link			
		Kevin Eliceiri	Director of LOCI P University of Madison. Collaborator and provides live cell imaging expertise on Open SPIM project.
	B	Johannes Schindelin	Senior Programmer at LOCI Of University of Madison. Wrote the µManager OpenSPIM steering interface. Develops and maintains Fig. 0.
	6	Luke Stuyvenberg	Student Programmer at LOCI P University of Madison. Works on the µManag OpenSPIM steering interface.

Tuesday, 11 November 14

1000

Thanks