Bespoke Microscopes

Ian Dobbie ian.dobbie@bioch.ox.ac.uk

- Image formation
- Beads and spherical aberration
- Bespoke microscopes in micron
- Bespoke microscope example DeepSIM

What is a microscope image

- The microscope produces a magnified, but also distorted, image
- Record the light intensity on a camera.

Microscopic imaging in mathematical terms.

- Take your sample
- Multiple it at every point by the imaging process in the microscope (convolve the PSF with the object).
- Produce the image.

The most important things to think about.

Contrast :- What is the difference between what you want to see and everything else?

Resolution :- How small things can you see?

Nothing else

Microscope Resolution

- No lens has perfect resolution, even in theory
- Resolution depends on the angle (θ) of the cone of light that the objective can collect from the specimen.
- Rule of thumb: Resolution limit ~ $\lambda/2$

Resolution: A technical definition, the Rayleigh Criterion

D, the distance of two closest points that can be distinguished

 $\overline{D}=1.22 \lambda/(NA_{obj}+NA_{cond})$

Epi-Fluorescence: $NA_{cond} = Na_{obj}$ so $D=1.22\lambda/2NA$

The Point Spread Function - PSF

- The image of an infinitely small point.
- Limited by resolution
- 3D structure also very important.

Image quality- the problem of "out-of-focus light" point spread function and airy rings

Sample object: a "subresolution" fluorescent bead

Vicron OXFORD

Theoretical and measured PSF Orthogonal views

Bead slide

Surface of slide

Tetraspeck beads: chromatic registration DAPI/FITC/Rhodamine/Cy5

Beads (PS Spec): Single fluorochrome Brighter -better for generating point spread functions for deconvolution

Inspec Intensity beads: Measure dynamic range

Affects of deep imaging (90 μ m) and collar settings on spherical aberration and psf of 60X/NA1.2w

0.13 surf 0.13deep

0.15 surf 0.15 deep

Data from Alejandra Clark

0.17 surf 0.17 deep

0.19 surf 0.19 deep

0.21 surf 0.21 deep

Spherical aberration dependent on wavelength, depth, RI

Bespoke systems in Micron

<u>User systems</u>

- Palm/TIRF system now within facility
- CryoSIM (at Diamond) A user available facility at Beamline 24 for correlative imaging.

Systems in development

- DeepSIM upright SIM with AO and remote focus
- 4PI super high resolution imaging
- CryoSIM II add AO to CryoSIM setup
- Aurox Clarity AO system add AO to a novel fast confocal system

Palm/TIRF

CryoSIM

DeepSIM

4Pi microscope

CryoSIM II

Aurox Clarity AO

Justification for Bespoke Systems

- Often necessary for specific specialised problems.
- Easily optimised for several parameters, speed, sensitivity etc...
- Can provide extremely flexible systems
 BUT think hard as it is likely to be harder, longer and more expensive than at first thought.

Bespoke Microscope Example - DeepSIM

- Live fluorescence imaging
- Simultaneous electro-physiology
- Rapid Z stacks, with minimal sample disruption
- Deeper imaging utilising Adaptive Optics (AO)

Live imaging

Upright microscope

Fast imaging

Fast Z movement issues

AO - Remote Focus

AO - Aberration correction

Image based correction strategy

 $a = -\frac{b(M_{+} - M_{-})}{2M_{+} - 4M_{z} + 2M_{-}}$

At least three measurements are necessary for quadratic maximization

Image based correction strategy : Fourier metric

Noise masks of Fourier transforms with varying amounts of Spherical aberration applied

Sensorless correction: Fourier Metric

Noise masks of Fourier transforms with varying amounts of Spherical aberration applied

Spherical aberration amplitude fitting

Sensorless correction: Fourier Metric

NMJ before correction Sensorless correction routine on NMJ dataNMJ after correction

Start with simple design

Add complexity

Drosophila Neuro-muscular Junction: Pseudo-widefield

Pseudo-widefield without AO correction Pseudo-widefield with AO correction

Drosophila Neuro-muscular Junction: 3D SIM reconstruction

3D SIM reconstruction without AO correction reconstruction with AO correction

Control software

Python - Microscope

- Python low level control of hardware
- Exports devices with a standard API
- Can control system entirely from python

Cockpit

- GUI built onto of microscope
- Allows easy control of even complex microscopes
- Intuitive control and sample navigation

Cockpit							>
ABORT	Single-site experiment	Multi-site experiment	View last file	Video mode	Light path	Snap image	Objective 60xwater 🔻
Cameras East-Green Readout mode EMCCD 17 MHz Gain 0 settings	West-Red Readout mode EMCCD 17 MH Gain 0 settings	I interfere Readout m default Gain None setting	dm nce A ode C S Vis Second	O set-up Select ROI Calibrate haracterise AO use Reset DM iystem Flat ualise Phase ly last pattern insorless AO	PiDIO Excitation path: conventional SI DM bypass	sim sim step	
Lights trans exposure / ms 100	ambient exposure / ms 100 v	488 exposure / ms 100 power / mW 150.0	561 exposure / ms 100 power / mW 70.1				

ron DRD

Bespoke Microscopes

Why bother?

Specific applications -better than commercial microscopes

Flexibility

Cost

Bespoke Microscopes

Why NOT to bother?

Salary of physicist/engineer required

Long building time required (it's hard)

 Not supported by a company (repairs are costly and lengthy)

Not always easy to use by biologists

How expensive is it?

Building costs Hardware ~£100-250k Salaries 1-3 years (~£50-£150) Total cost ~£150-350k

Commercial OMX system ~£400k

Summary

- Recap on image formation
- Fluorescent beads showing aberrations
- Examples of bespoke development
- Bespoke microscope building projects pro's and cons.