Introduction to Bioimage Analysis

Micron Advanced Microscopy Course

Ulrike Schulze

Weatherall Institute of Molecular Medicine (WIMM) at the John Radcliffe Hospital. University of Oxford, UK.

Ulrike.Schulze@rdm.ox.ac.uk

What is Image Analysis?

• precise

- unbiased
- reproducible

Available Image processing and Analysis Software

Image-Pro Zen LE software Drishti Volocity ImageJ Oko-Vision **Clemex Vision PE** CellProfiler IN Cell Investigator Fiji Nikon Z-C1 Omero MetaMorph Image Surfer MatlabPhotoshop ImageTool Imaris ImageTrak Mathematica MCID Image Metrology MIATool Icy SimpleWareParaView Reconstruct SoftWoRx FLIMfitLeica LASSinema AutoQuant MeVisLab VIAS Reconstruct **Biolmage XD**

medicine

microscopy

remote sensing astronomy materials science machine vision security robotics geology optical character recognition assay micro-plate reading metallography defence filtering

Source: <u>http://en.wikipedia.org/wiki/Image_analysis</u>, <u>http://www.hsr.it/research/organization/</u> services-open-labs/alembic-advanced-light-and-electron-microscopy-bioimaging-center/9/#fs35

General analysis software: Fiji/ImageJ

- Originally created by Wayne Rasband at the NIH in 1997 as ImageJ.
- Free and easy to get running on all systems.

Source: Source: http://fiji.sc/Fiji

Installation of FIJI

Get it from: <u>https://imagej.net/Fiji/</u> <u>Downloads</u>

- Doesn't need installation just unzip/uncompress and run.
 - <u>Don't</u> save it in "Program Files"!
- Updated regularly
 - Use lifeline versions if needed to avoid updating issues

Date	Downloads						Description			
	64-bit	32-bit	macOS	64-bit	32-bit	no-JRE	Description			
2017 May 30		T					The final version of Fiji using Java 6, for all platforms.			
2015 December 22	2	2	Å	Δ	Δ	Ø	Just prior to starting the transition to Java 8.			
2014 November 25	2	N	Å	۵	۵	Ø	Just prior to a big update to facilitate reproducible builds.			
2014 June 02	N	N	Č	۵	۵	IJ	Just prior to some big changes to ImageJ2 under the hood.			
2013 July 15	N	N	Ċ	۵	۵	IJ	Just prior to extensive changes reconciling Fiji with ImageJ2.			

General analysis software: Cell Profiler

 CellProfiler is free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automatically.

Source: <u>http://www.cellprofiler.org/</u> started by Anne E. Carpenter and Thouis Jones

General analysis software: Icy

• Icy has been created by the Quantitative Image Analysis Unit at Institut Pasteur. Free and easy to get running on all systems.

Source: http://www.bioimageanalysis.org/

3D datasets

Source: Imaris Filament tracer

3D Software

- Volume Visualisation
- Automatic and manual identification of objects in 3D
- Tracking and Colocalisation in 3D
- generally expensive

Matlab and Python

Matlab is popular tool for technical computing. Integrated programming environment. Images are imported as arrays of numbers.

Python is free and very versatile scripting language growing in popularity.

Matlab and python has many tools used for segmentation and analysis of data.

Both include visualisation tools for end-2-end analysis.

An Image is a matrix of numbers

Source: http://blog.kleinproject.org/, https://towardsdatascience.com/understanding-images-with-skimage-pythonb94d210afd23

Pixel size

(0,0) x

Multiple Dimensions

Opening an Image with FIJI

Accessing metadata with FIJI

	(Fiji Is Just) Image.	J	OME Metadata - AT1_Brd4_Airyscan_i1-Airyscan Processing-07.czi					
Fiji Is Just) ImageJ 2.0.0-rc-69/1.52p; Java 1.8.0_172 [64-bit]; Click here to search Stiglie Ib = There1.00?) Click here to search Setting Inter1.00? Click here to search Stiglie Ib = There1.00?) Stiglie Ib = There1.00?)<								
	Bio Formals insport Options		Charles bigLindian - laise Dimensionorden - ACLY 10 - FAELS of Interfaced - laise Physical Steek - 0.05562241394 Charles AcquisitionMode="LaserScanningConfocalMicroscopy" Color="16711935" EmissionWavelength="488.0000"	0000000006" EmissionWavelengthUnit="nm				
Stack viewing View stack with: Hyperstack Stack order: XYCZT	Metadata viewing Display metadata Display OME-XML metadata Display ROIs ROIs Import Mode: ROI manager Memory management Use virtual stack Specify range for each series Crop on import	Information Display metadata - Reads metadata that may be contained within the file format and displays it. You can save it as a text file or copy it from the File and Edit menus specific to the "Original Metadata" window. Readability depends upon the manner in which metadata is formatted in the	Original Metadata - AT1_Brd4_Airyso Key BitsPerPixel DimensionOrder IsInterleaved	data - AT1_Brd4_Airyscan_i1-Airyscan Processing-07.czi Value 16 XYCZT false false true uint16 AT1_Brd4_Airyscan_i1 #1 4 1 1572 1572 77 'FocusPosition #1 0 'FocusPosition #2 0 'FocusPosition #3 0 'Id #1 Marker:1 'Id #2 Marker:3				
Dataset organization Group files with similar names Open files individually Swap dimensions Open all series Concatenate series when compatible Stitch tiles Color options Color mode: Default		data source. The metadata can also be displayed by pressing "i" (Image > Show Info) when the imported image is active.	IsRGB LittleEndian PixelType Series 0 Name SizeC SizeT SizeX					
	Split into separate windows Split channels Split focal planes Split timepoints		SizeZ Appliance Data ShuttleAndFindData Calibration Marker FocusPosition #1 Appliance Data ShuttleAndFindData Calibration Marker FocusPosition #2 Appliance Data ShuttleAndFindData Calibration Marker FocusPosition #3 Appliance Data ShuttleAndFindData Calibration Marker Id #1 Appliance Data ShuttleAndFindData Calibration Marker Id #2 Appliance Data ShuttleAndFindData Calibration Marker Id #3					
Autoscale		Cancel OK	Appliance Data ShuttleAndFindData Calibration Marker StageXPosition #1 Appliance Data ShuttleAndFindData Calibration Marker StageXPosition #2 Appliance Data ShuttleAndFindData Calibration Marker StageXPosition #3 Appliance Data ShuttleAndFindData Calibration Marker StageYPosition #1 Appliance Data ShuttleAndFindData Calibration Marker StageYPosition #2 Appliance Data ShuttleAndFindData Calibration Marker StageYPosition #2 Appliance Data ShuttleAndFindData Calibration Marker StageYPosition #3	0 0 0 0 0				

Appliance|Data|ShuttleAndFindData|Calibration|MicroscopeType #1

LM

Metadata can be found when you import images to Fiji.

Metadata can be found through the image-> show info option also.

Image File Formats

Grayscale

8-bit, 16-bit, 32 bit

Attention when converting between different bit-depth!

32-bit images:

- Can be positive/negative
- represent floating point numbers
- Useful for image maths

Look up tables

RGB Images

Dead Pixels and Saturated Pixels

Source: http://microscopynotes.com/imagej/saturation/index.html

Segmentation - thresholding

Source: https://en.wikipedia.org/wiki/Thresholding_(image_processing)

Make Binary Convert to Mask

Erode Dilate Open Close-

Outline Fill Holes Skeletonize

Distance Map Ultimate Points Watershed Voronoi

Options...

Morphological operators

Discrete morphological operators

Watershed: Splits blobs

Erosion: Shrink blobs

2d peak finding: Process -> Find Maxima

Deconvolution

Out-of-focus information is moved back to its estimated origin

Source: https://www.imperial.ac.uk/media/imperial-college/medicine/facilities/film/Deconvolution-training-140219.pdf

Deconvolution

Deconvolution software

Deconvolution

- Image restoration
- Volume Visualisation
- Some analysis

Software is Expensive.

Some new deep learning solutions are becoming available. e.g. CARE http://csbdeep.bioimagecomputing.com/

SoftWoRx

Source: <u>http://www.svi.nl/HuygensSoftware</u>, <u>http://www.mediacy.com/index.aspx?page=AutoQuant</u>, <u>http://api.gehealthcare.com/api/</u> softworx-suite.asp

Deconvolution

Be aware of artefacts!

https://svi.nl/ImageGallery

Colocalisation statistics

How similar are these images?

Three ways to evaluate colocalisation

Pearson's Correlation Coefficient

Images which have similar 'spatial' distribution of pixel values will be highly-correlated. We can use this to establish colocalisation.

Pearson's product-moment correlation test

Pearson's equation:

$$r = \frac{\sum \left(R_i - \bar{R}\right) \times \left(G_i - \bar{G}\right)}{\sqrt{\sum \left(R_i - \bar{R}\right)^2 \times \sum \left(G_i - \bar{G}\right)^2}}$$

if r is 1.0 means correlation

if r is close to '0.0' no correlation.

if r is -1.0 it means anti-correlation.

r = 0.85

r =0.25

R refers to one channel, G refers to Green channel. G or R with a bar refers to mean intensity in that channel. 'i' refers to each pixel in image. Sigma (big E) refers to sum. So sum of all pixels minus their mean.

Dimensionless and normalised comparison. Can be used on any two images as long as they are the same spatial size and don't have too many black pixels

Source: http://en.wikipedia.org/wiki/Correlation coefficient

Pearson's test is insensitive to global intensity

- •Pearson's test is (within reason) insensitive to linear changes in intensity.
- •This is good, it looks at trends rather than absolute values.
- •This means expression variation between cells does not ruin experiment

Pearson's test is sensitive to bleed-through and noise

Fluorophore Emission Bleed-Through in Confocal Microscopy

•Spectral bleed through will artificially increase the correlation coefficient.

• Noise will artificially decrease the correlation coefficient.

P's test is sensitive zero pixels and saturation

•Pearson's test doesn't ignore '0' pixels and noise within calculation.

•Coloc 2 plugin does warn you however: The ratio between zero-zero pixels and other pixels is larger 0.37. Maybe you should use a ROI.

Sensitivity to resolution

The « diagnostic » placed for co-localisation should always be stated relative to a particular <u>resolution</u> and <u>sampling rate</u>.

In cell biology:

the two proteins are at the same location

•The statistical point-of-view:

Considering the current resolution, it might not be excluded that the two proteins are indeed at the same location

Sensitivity to resolution

The « diagnostic » placed for co-localisation should always be stated relative to a particular <u>resolution</u> and <u>sampling rate</u>.

•In cell biology: the two proteins are at the same location

•The statistical point-of-view:

Considering the current resolution, it might not be excluded that the two proteins are indeed at the same location

Sensitivity to resolution

$$r = 0.23$$

r = 0.84

A good example of pearson's test for colocalisation

Comparing EV7 staining with Lamp2 over time.

в

Source: http://mbio.asm.org/content/3/2/e00304-11/F5.expansion.html

Always consider the limitations of the method and chose your Experimental settings and controls carefully.

3D visualisation & Analysis

- Volume Visualisation
- Automatic and manual identification of objects in 3D
- Tracking and Colocalisation in 3D

3D visualisation & Analysis

Plugins	Window	CodexMAV	EMBL	
Macros	;		•	
Shortco	uts		•	
Utilities	5		•	
New			•	
Compil	e and Run.			
Install			ŵжм	
Install F	Plugin			
3D				3D Fast Filte
3D View	wer			3D Edge and
Analyze	9		•	3D Hysteresi
BigData	aViewer		•	3D Simple Se
BigStite	cher			3D Maxima F
Bio-For	mats			3D Spot Seg
Clearer	1 Sample O	uality Estimat	ion	3D Iterative
Cluster		durity Estimat		Manual Spot
Color Ir	spector 3	D		
Exampl	les			3D Fill Holes
Enature	Extraction			3D Binary Cl
Feature		•		3D Watershe
	50			3D Watershe
Image	D			3D Watershe
Integra	l Image Eilt	ore		3D Manager
lanalia	LIZEE Deer	dor		3D Manager
Janella	H205 Rea	uel		3D Centroid
LOCI	albox			3D Geometri
Londro	orko			3D Shape Me
Lanoma				3D Intensity
Magaia				3D Numberin
Mosaic	1			3D RDAR
Multivi	J Decensi	ruotion		3D Distance
Nouro	ew Reconst	luction		3D Interactio
NeuroA	matomy			3D MultiColo
Neuron	IJ			3D MereoTop
OMERC	1			3D Exclude E
Optic F	IOW			3D Radial Dis
Proces	S			3D Density
Randor	nJ			3D EVF Distr
Registr	ation			3D Ellipsoid
Segme	ntation			3D Convex H
Skeleto	n		•	3D Draw Sha
Spatial	Statistics		•	3D Draw Line
StackR	eg		•	3D Crop
Stacks			•	3D Crop All (
Stitchin	ng		•	3D Binary Int
Time La	apse		•	SD Draw Rols
Trackin	g		•	
Transfo	orm		•	
Transfo	ormJ		•	

TurboReg

Macro Programming

Take nice images!

- No saturated pixels
- Good signal to noise
- Low background
- Keep imaging conditions the same: laser power, gain, resolution, etc.
- Microscopes have to be aligned
- Be mindful of chromatic aberrations
- Think about image Analysis before acquiring hundreds of images!

Don't!

- Adjust the brightness and contrast equally in each image or else include colour scale.
- Do not disguise faint structures in your image by adjusting brightness to hide it.
- Do not remove or change pixels in background.
- Don't apply non-linear transforms to image (e.g. change gamma).
- Don't do anything you cannot justify in your methods.

Image Analysis questions for later

S image.sc	لله المعالم المحافظ الم	Sign Up	Log In	Q =
Community Partners				
all categories ▶ all tags ▶ all ◄ Latest Top Categories Unanswered				
Торіс		Replies	Views	Activity
 Welcome to the Image.sc Forum! Announcements Welcome to the Scientific Community Image Forum at forum.image.sc! This forum's focus is software-oriented aspects of scientific imaging, particularly (but not limited to) image analysis, processing, acquisition, storag read more 	۱	3	3.0k	18d
Can Deep Learning learn existing Deconvolution (or other) algorithms? Image Analysis care	(i) 🚯 🔮 🗿 🚯	9	92	1m
Reproducibility of BigStitcher Reconstruction Image Analysis imagej, plugin, bigstitcher	۱	3	20	11m
 Is it possible to reopen an accidentally closed polygon ROI in imageJ? Image Analysis fiji, imagej, segmentation 	S	2	29	41m
Adding arrows, text and other types of annotation to multiple frames of a movie in ImageJ Usage & Issues imagej, image-annotation		5	73	1h
Error when exporting pdf from omero.figure ("class %s instances can only be saved once" selfclassname) Usage & Issues omero, omero-figure	% 🕒 🕲	4	31	1h
Creating customisable image windows using imagej 2	()	1	35	1h

Thank you!

Ulrike.Schulze@rdm.ox.ac.uk

Ulrike Schulze

Thank you!

Ulrike.Schulze@rdm.ox.ac.uk

Ulrike Schulze

Brightness Conversion of image intensity to display intensity

Contrast

ratio of the brightest spot to the darkest spot in the image. It affects the range of the displayed image

MinMax Slider

Change Brightness and Contrast simultaneously

81.92x81.92 µm (512x512); 8-bit; 256K

Gamma correction

https://www.dfstudios.co.uk/articles/programming/image-programming-algorithms/image-processing-algorithms-part-6-gamma-correction/

Gamma correction

