

Live-cell Imaging: Liven up your data!

Nadia Halidi

Imaging Facility Manager @ Micron Advanced Bioimaging Unit

Designing a microscopy experiment

HypothesisExperimental
planningSample
preparationImage
AcquisitionProcessing &
analysisData visualisationHypothesisData visualisationAcquisitionProcessing &
analysisData visualisation

- Informative results what kind of informative results are needed to test the hypothesis
- Required data what data are required to produce the informative results
- Required controls what controls are required to support the informative results
- Parameters what are the experimental parameters dictated by the data
- Microscope selection which instruments aligns with the experimental parameters
- Data management and storage
- Data analysis what tools are required to extract the informative results

The limiting factor is: Photon budget.

GIGO!

Let's see some interesting experiments!

Micron OXFORD

Live-cell imaging - Why?

Calcium wave propagation in an arterial strip (Seppey et al. 2010)

Cell migration on substrates (Halidi, unpublished data)

RhoA FRET-biosensors activity in MEFs on soft substrates (Halidi, unpublished data)

Simultaneous Rac1 FRET-based biosensors activity and traction force microscopy (*Halidi, unpublished data*)

FRAP in U2OS cells transfected with GFP-tagged MLLT1 (Moustakim et al. 2018)

Second harmonic generation in tendon (Halidi & Lagerholm, unpublished data)

Track cellular and sub-cellular processes in real time

Live-cell imaging - Why?

A mammosphere formation of MCF7 cells in growth media, brightfield

A tumoroshpere formation of MCF7 cells in agarose gel, lightsheet

- Sample preparation (mounting, staining, media)
- Choosing a microscope (inverted vs upright)
- Maintaining live cells on the microscope stage
- Efficiency of detection
- Photobleaching & Phototoxicity
- Data processing and analysis through examples

Sample preparation: Mounting options

Thin coverslip #1.5 thickness or 170 um

Micron OXFORD

Sample preparation: Mounting options

Microfluidics setups

Sample preparation: Mounting options

Extracellular matrix (ECM) proteins coating and coated plates

Media options and considerations

Avoid media w/ autofluorescence properties (phenol red, serum proteins)

From Iain Johnson, Microscopic Imaging Core @ Wake Forest University

Source Organism/Tissue	Ex (nm)	Em (nm)
		Em (nm)
Flavins CHO cells	380, 460	520
Rat hepatocytes	468	525
Neural cells (rat, bovine)	488	540-560
Goldfish inner ear	450	540
Periplaneta americana	<350	530
NAD(P)H Bat cardiomyocytes	395	509
S. cerevisiae	366	440-470
CHO cells	360	440-450
Lipofuscins Medulla (rat, human, rhesus monkey)	460-490	520
Rat heart	450-490	550
Muscle, myocardium, hepatocytes	360	540-560
Human brain	435	481-673
Rat liver	345	430
Rat retina	390-490	>510
Collegen and electin Aarta, earonany arteny (human)	176	<u></u>
Skin (human)	470	470-520
		470-520

Analytical Biochemistry, 2001, 291:175

Sample preparation: Mounting options

Extracellular matrix (ECM) proteins coating and coated plates

Media options and considerations

- Avoid media w/ autofluorescence properties (phenol red, serum proteins)
- CO₂-dependent media —> requires CO₂ in the atmosphere
- CO_2 -independent media —> requires buffers e.g. HEPES buffered media or Leibovitz L 15

- Fluorescent protein tags
- Fluorescently tagged ligands
- Fluorescent antibodies to extracellular epitopes
- Cell permeant small molecule fluorophores (e.g. dyes, DNA stains)

See yesterday's Mark Howarth lecture: Fluorescent Dyes and Proteins

Fluorescent proteins: mTagBFP2, EGFP, tdTomato, iRFP, cerulean, citrine, mcherry, mKate2 Multi-color experiments: DAPI (Alexa 405, Alexa/Atto 488, Alexa 568, Alexa 647) Live cell nuclear dyes: Hoechst, SYBR safe DNA stain (replacing Ethidium Bromide) Cell tracker dyes, Vybrant Dil, CM-Dil, DiO and DiD cell-labeling

Choosing a microscope: Upright or Inverted?

Things to considerations:

- Samples mounted on a multi-well plate
- Samples won't grow on glass bottom dishes
- Sample thickness
- Need access to samples (e.g. addition of drugs, inhibitors)
- Environmental control is important
- Location of what we want to detect (adhesion sites —> TIRF)

Maintaining live cells on the microscope stage

Temperature CO₂ Humidity

Vicron OXFORD

The efficiency of detection depends mainly on:

- 1. The objective
- 2. The filter set
- 3. The detector

• The objective determines the special resolution and controls the amount of light gathered from the specimen. (look for NA)

Numerical aperture (NA) = $n \mathbf{x} \sin \mu$

(a) $\mu = 7^{\circ}$ NA = 0.12 (b) $\mu = 20^{\circ}$ NA = 0.34 (c) $\mu = 60^{\circ}$ NA = 0.87

- The objective determines the special resolution and controls the amount of light gathered from the specimen. (look for N.A.)
- Avoid refractive index mismatches between the sample and the immersion oil.

- The objective determines the special resolution and controls the amount of light gathered from the specimen. (look for N.A.)
- Avoid refractive index mismatches between the sample and the immersion oil.
- Working distance
- Field of view
- Number of optical corrections in the lens design

Efficiency of detection: The filter sets

- Know your fluorescent protein absorption and emission spectra
- What filters are there on the system (preferably narrow bandpass)

MICRON ADVANCED IMAGING CONSORTIUM

users to identify and avoid common problems with 3D-Structured Illumination Microscopy (3D-SIM)

careful matching of excitation sources, dichroics, emission filters, detectors, and dves to operate at

cells is central to biology and is particularly powerful when the motility characteristics of

Efficiency of detection: The detectors

Detectors for imaging How PMT's work

Chris Power Product & Application Sales Specialist Chris.power@zeiss.com

Widefield & Spinning disk confocal

cameras

CCD

EMCCD

sCMOS

Scanning confocal detectors PMT Gallium Arsenide Phosphide (GaAsP)

The final image always boils down to signal-to-noise!

The efficiency of detection depends mainly on:

- 1. The objective
- 2. The filter set
- 3. The detector
- ... but also
 - 4. Correcting focus drift
 - 5. Stage control
 - 6. Imaging multi color w/ spectral detection & linear unmixing

Photobleaching -> dye not happy!

micro.magnet.fsu.edu

Phototoxicity -> cells not happy!

Derivery E, 2008

E.g., peroxides, superoxides, hyrax radical and single oxygen.

Excessive ROS can:

- Damage of the lipids, DNA, RNA and proteins
- Induce apoptosis

Literature:

- DNA Damage and Oxygen Radical Toxicity. Imlay et al. Science 1988, 240:1302
- Cross-talk between calcium and reactive oxygen species signaling. Yan et al. Acta Pharmacologica Sinica (2006, 1745:)

The iron triangle

Now which microscope should I use?

3D imaging and optical sectioning: WF deconvolution Spinning disk confocal Scanning confocal Multi-photon lighsheet

n

Now which microscope should I use?

3D imaging and optical sectioning:

WF deconvolution

Spinning disk confocal

Scanning confocal

Multi-photon

lighsheet

The limiting factor is: Photon budget.

Recommended reading: Jonkman et al. Nature Protocols 2020, 1585–1611

Data processing and analysis through examples OXFORD

I have images! YAAAAY! so what now?

Be quantitative!

Fast dynamics: Propagation of intercellular Ca²⁺ waves

Primary SMCs grown on µCP collagen lines.

Fast Ca²⁺ wave \rightarrow 2310 ± 210 µm/s

Slow Ca²⁺ wave \rightarrow 1) 19.8 ± 1.6 µm/s **2)** $21.4 \pm 2.2 \,\mu\text{m/s} \rightarrow 28\%$

Transjunctional delay

 $\Delta t = 0.84 \pm 0.16 \text{ s}$

Tracking cell migration on variable stiffness

Cell migration on substrates (Halidi, unpublished data)

Morphodynamics

Halidi, unpublished data

FRET experiment

Moustakim et al. 2018

Fluorescence Systems

Widefield fluorescence microscopes

Personal DeltaVision DeltaVision Core DeltaVision Elite DeltaVision Elite 37°C

Scanning confocal systems

ZEISS LSM 780 ZEISS LSM 880 inverted w/ Airyscan ZEISS LSM 880 upright w/ Airyscan Olympus FV1000 Olympus FV1200 Olympus FV3000

Spinning disk confocal systems

PerkinElmer UltraVIEW

Lightsheet systems

ZEISS lightsheet Z.1

Super-resolution Systems

Structured illumination DeltaVision OMX V2 DeltaVision OMX V3

Photoactivated localization Bespoke PALM/TIRF

Stochastic optical reconstruction Nanoimager

Image Analysis Suite

OME database Image processing and analysis softwares FIJI/ImageJ Imaris

Arivis SoftWorx MatLab Volocity Chromagnon Zen blue

Thank you!

