

Lecture 10 17th November 2020

Introduction to Fluorescence Microscopy

Dr Carina Mónico Micron assistant manager

carina.monico@bioch.ox.ac.uk

UNIVERSITY OF

Micron Advanced Microscopy Course 2020

Outline

- 1. What is fluorescence? Fluorescence Spectra
- 2. Why fluorescence is so commonly used in microscopy?
- **3.** Filtersets for fluorescence imaging
- 4. Basic principle and components of fluorescence microscopes
 - Dichroic mirror
 - Transmitted vs. Reflected
 - Fluorescent light sources
- 5. Widefield fluorescent microscopy
- 6. Deconvolution, PSF, OTF

Light: the electromagnetic spectrum

increasing Energy and Frequency

increasing Wavelength

700 nanometers

400 nanometers

380 - 700 nm visible to the human eye

500 nanometers

600 nanometers

1. What is Fluorescence?

Fluorescence is the emission of light by a molecule that has absorbed light

Molecules have discrete levels of energy

1. What is Fluorescence?

Fluorescence is the emission of light by a molecule that has absorbed light

A photon is the energy unit for light to interact with matter

1. What is Fluorescence?

Fluorescence has higher wavelength than absorbed light

The full picture is represented on the Jablonski diagram...

Fluorescence Spectra

Fluorescence Spectra

Genetically encoded fluorescent proteins

GFP, YFP, mCherry

Organic dyes

- Alexa, ATTO, Fluorescein, DAPI, Cyanine (Cy3, Cy5)
- Fluorescent labelled antibodies (immunofluorescence)

Quantum Dots

Elastin, collagen, metabolic coenzymes (NADH, FAD)

2. Why Fluorescence?

CONTRAST

© John Ward

2. Why Fluorescence?

- Weak signal against dark background
- High signal to background contrast

Bright field (DIC)

Fluorescence

Intensity profile

https://www.thermofisher.com/uk/en/home/life-science/cell-analysis/cell-analysis-learning-center/molecular-probes-school-of-fluorescence/imaging-basics/

2. Why Fluorescence?

- Selective labeling
- Ease of multiplexing
- Quantitative

HypF-N Amyloid aggregates Cholera Toxin B (membrane) DNA (nuclei) - Fibroblasts

PALM

Widefield deconvolution

STED

FCS

Confocal

STORM

Lightsheet

2 photon

Why is the background black in a fluorescent image ...?

3. Fundamental problem in fluorescence microscopy

WEAK fluorescence signal

produce high-efficient illumination of the specimen

capture weak fluorescence emission

EMISSION fluorescence

illumination

EXCITATION

CAMERAL MARK INTALLANT

3. Dichroic mirror - at the heart of fluorescence microscopy

Dichroic mirrors are made by coating a glass substrate with a series of optical coatings

Teledyne imaging (<u>https://possibility.teledyneimaging.com/show-money/</u>)

3. Dichroic mirror - at the heart of fluorescence microscopy

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5007

Dichroic mirror - Spectral properties

Separates excitation light from emission light

EX

3. Filtersets for fluorescence

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5007

Filter Block Turret Emission Filter Dichromatic Mirror Excitation Interference Filters Filter Combination Optical Block (Cube)

Fluorescein (FITC)

Rhodamine (TRITC)

Wavelength (nm)

Care to take when multiplexing

Crosstalk or bleedthrough

Care to take when multiplexing

Crosstalk or bleedthrough

Fluorescence SpectraViewer, ThermoFisher scientific

SPEKcheck

SPEKcheck — fluorescence microscopy spectral visualisation and optimisation: a web application, javascript library, and data resource. Mick A. Phillips, David M. Susano Pinto, Ian M. Dobbie. Software Tool Article Wellcome Open Research 2018, 3:92

Always check microscope filter sets before designing your experiment

4. Components of a microscope. Brightfield vs. Fluorescence

Transmitted light (Brightfield) Reflected Light (Fluorescence) **ILLUMINATION** Epifluorescence Widefield SOURCE **CONDENSER FLUORESCENCE SPECIMEN** TRANSMITTED **CONDENSER** LIGHT **OBJECTIVE LENS** DICHROIC ILLUMINATION EX EM SOURCE DETECTOR **EYEPIECE**

4. Transmitted vs. Reflected light paths (inverted)

https://www.thermofisher.com/uk/en/home/life-science/cell-analysis/cell-analysis-learning-center/molecular-probes-school-of-fluorescence/imaging-basics/

Illumination sources for widefield fluorescence microscopy

Widefield fluorescence

Mercury Arc Lamp

- 200 h
- hazardous
- out of use

Simultaneous excitation of multiple Fluorophores over a wide wavelength range

Illumination sources for widefield fluorescence microscopy

Widefield fluorescence

Methal halide lamp

- Coupled with a liquid guideline (fibre)
- Makes noise, takes time to warm up

- No need for alignment
- ∍ 2000 h

Illumination sources for widefield fluorescence microscopy

State of the art for widefield fluorescence

LEDs Light Emitting Diodes

http://www.coolled.com/product-detail/led-wavelengths/

Wide range of lines available of defined colours
Stable and bright

Illumination sources for fluorescence microscopy

Lasers

(light amplification by stimulated emission of radiation)

Narrow beams of highly monochromatic, coherent and collimated light

5. Widefield Fluorescence Microscopy

The whole field of view is collected at once

- ✓ Fast
- ✓ Sensitive
- ✓ Ideal for thin samples (~10 μ m thick)
- Suitable for live cell imaging

BPAE cells Mitochondria (Mitotracker Red) Nuclei (DAPI)

5. Widefield Fluorescence Microscopy

- Time lapse imaging
- Multipoint visiting
- Tiling and stichting
- Specially powerful when combined with Deconvolution

Deconvolution

BPAE cellsMitochondria (Mitotracker Red)Nuclei (DAPI)

Understanding the basics of Deconvolution

Removes image blur

Improves contrast and resolution

Purely computational

Blur comes from light diffraction and to out of focus light

PSF - Point Spread Function

OTF - Optical Transfer Function

Point Spread Function

How does light spread out from a single point?

Light is emitted in all directions

y

If all light was collected and if light would travel in straight lines

But the point actually looks blurred / distorted because of diffraction (Airy diffraction pattern)

Fluorescent bead, single dye, or a fluorescent protein as a point source of light

Point Spread Function

PSF is a measure of the microscope response to a point source of light

- microscope performance
- spherical aberrations

Why is it important?

- 🗳 x, y, z info
- image quality
- alignment
- optical resolution

6. PSF in fluorescence

PSF

red fluorescent 170 nm bead

Airy disk diffraction pattern

(concentric rings)

Light waves emitted from a point source are not focused into an infinitely small point by the objective

They converge together and interfere in the image plane

Orthogonal view

Ζ

PSF is the 3D image of a point-like object under the microscope

Orthogonal view

PSF

red fluorescent 100 nm bead

What can we observe?

Blur is broader in z than xy

How symmetric is the distribution

ALIGNMENT, SPHERICAL ABERRATIONS, MISMATCH REFRACTIVE INDEX

PSF is a way to measure resolution

As the Full Width at Half Max (FWHM) of the PSF

As the diameter of the Airy disk (first dark ring of the PSF) = "Rayleigh criterion"

≈ 0.61 *λ/NA*

Why is the Airy pattern a distribution of white and black rings?

Objective lens Image plane

Why blurred and how is the Airy diffraction pattern generated?

Why blurred and how is the Airy diffraction pattern generated?

Why blurred and how is the Airy diffraction pattern generated?

Migher numerical aperture, less distortion, higher resolution

Higher numerical aperture, less distortion, higher resolution

How is the PSF of a small object?

- 1.4NA objective
- $\lambda = 0.48 \ \mu m$

$$d = \frac{\lambda}{2NA} \sim 170$$
nm

Abbe's diffraction limit

OTF (Optical transfer function)

Used in widefield-deconvolution and Super-resolution (SIM)

OTF represents how spatial frequencies are handled by the optical system

How often it happens in space?

OTF (Optical transfer function) is the Fourier transform of PSF

OTF

What are spatial frequencies in an image?

TUTUTU

Lower frequencies - blurred

FIJI / Process / FFT

Fourier transform

Inverse Fourier transform

OTF (Optical transfer function) is the Fourier transform of PSF

It's very easy to detect certain features in the frequency domain

All frequencies

It's very easy to detect certain features in the frequency domain

All frequencies

Just lower frequencies

Just higher frequencies

Inverse Fourier transform

It's very easy to detect certain features in the frequency domain

All frequencies

What does it represent?

Back Aperture Objective

The microscope passes low frequencies (large and smooth) and excludes high frequencies

FIJI / Process / FFT

All frequencies

Fourier transform

Back Aperture Objective

FIJI / Process / FFT

Fourier transform

Inverse Fourier transform

Deconvolution

Different methods to deconvolve images

Conclusions

- Why is fluorescence? CONTRAST
- Dichroic mirror separates illumination (excitation) from fluorescence (emission)
- * Excitation and emission filters to image different fluorophores
- * Fluorescence microscope:
 - * illumination light is reflected (opposed to transmitted in Brightfield microscopy)
 - objective illuminates and collects fluorescence (both "condenser" and objective)
- Point Spread Function and Optical Transfer Function
- Widefield fluorescence microscopy collects the whole field of view at once; it's fast and very sensitive and you can have deconvolution for free
- * Deconvolution removes blur from microscope images, improving contrast and resolution

Questions?