

Lecture 4 16th November 2020

Anatomy of a microscope

Dr Carina Mónico

Micron assistant manager

carina.monico@bioch.ox.ac.uk

Micron Advanced Microscopy Course 2020

1. Components of an optical microscope

- 2. Types of Optical microscopes
 - Inverted
 - Upright
 - Stereo or dissecting microscope
- 3. How are lenses used in the context of the microscope
- 4. Understanding conjugate planes in microscopy

What a microscope needs to do ?

Produce magnified images

- Capture details in the sample
- Collect as much light as possible
- Do all of the above while introducing as little distortion as possible

Use 2 lenses to form a magnified image of the specimen

Compound microscope

1. Components of an compound microscope

Total magnification = Objective x Eyepiece

2. Types of optical microscopes

2. Types of optical microscopes

- Samples mounted between coverglass and slide
- **Maging in glass bottom petri dishes**
- Allows sterile environment for live cell imaging

- Samples mounted between coverglass and slide
- X Live cell imaging in glass bottom petri dishes
- **Main States** Live imaging with dipping objectives
- Particularly useful for larger samples like tissues and animals

2. Stereoscope or dissecting microscope

3D view of opaque, thick, solid specimens

https://microbiologynote.com/dissecting-microscope-stereo-microscope-definition-uses-parts-principle/

3. How are lenses used in a microscope to...

... collect light from the specimen to create an image at the camera and ocular?

... focus light from the light source to illuminate the sample?

3. How images are formed - Recap from Ray tracing

Rays from the focal plane exit parallel

Rays through the centre of the lens continue straight (i.e. are not refracted)

3. How images are formed in the context of the microscope

Parallel rays don't form images

A second lens is needed to form the image: Tube lens

A second lens is needed to form the image: Tube lens

How is the image formed at the camera?

How is the image formed through the eyepieces?

4. Understanding conjugate planes in microscopy

Why can we see the image of our specimen at the eyepieces and at the camera?

4. Image and illuminating conjugate planes

Conjugate to the light source plane

Conjugate to the sample plane

Each image formed at a plane within a conjugate set

... is simultaneously in focus

... appears superimposed upon one another

Microscope anatomy demo today at 1.35 pm

Conclusions

Components of an optical microscope

Inverted and Upright microscopes have the same optics, just opposite configurations

- Stereomicroscope is used for 3D viewing of opaque specimens and to manipulate specimens minutely (e.g. during dissection)
- How lenses are used in the context of the microscope to illuminate the specimen and to form images

2 independent sets of conjugated planes in microscopy:
Image forming planes: Specimen, Retina, Camera and Field aperture

Illuminating planes: Lamp filament, Condenser aperture and Back focal plane of the objective

Book

J. B Sanderson, Understanding Light Microscopy

(Royal Microscopical Society)

Useful websites

https://www.ibiology.org/online-biology-courses/microscopy-series/

http://www.microscopyu.com

http://www.olympusmicro.com

https://www.zeiss.com/microscopy/int/solutions/reference/alltutorials/basic-microscopy.html

<section-header><image><image><image>

