Bespoke Microscopes

Ian Dobbie ian.dobbie@bioch.ox.ac.uk

Overview

- Image formation
- Beads and spherical aberration
- Bespoke microscopes in micron
- Bespoke microscope example DeepSIM

What is a microscope image

- The microscope produces a magnified, but also distorted, image
- Record the light intensity on a camera.

Microscopic imaging in mathematical terms.

- Take your sample
- Multiple it at every point by the imaging process in the microscope (convolve the PSF with the object).
- Produce the image.

The most important things to think about.

Contrast: What is the difference between what you want to see and everything else?

Resolution:- How small things can you see?

Nothing else

Microscope Resolution

- No lens has perfect resolution, even in theory
- Resolution depends on the <u>angle</u> (θ) of the cone of light that the objective can collect from the specimen.
- Rule of thumb: Resolution limit $\sim \lambda/2$

Resolution: A technical definition, the Rayleigh Criterion

D, the distance of two closest points that can be distinguished

 $D=1.22 \lambda/(NA_{obj}+NA_{cond})$

Epi-Fluorescence: $NA_{cond} = Na_{obj}$ so $D=1.22\lambda/2NA$

The Point Spread Function - PSF

- The image of an infinitely small point.
- Limited by resolution
- 3D structure also very important.

Image quality- the problem of "out-of-focus light" point spread function and airy rings

Sample object: a "subresolution" fluorescent bead

Theoretical and measured PSF Orthogonal views

Generated PSF

Bead slide

Surface of slide

90 microns
thick
Surface of cover slip

Tetraspeck beads: chromatic registration DAPI/FITC/Rhodamine/Cy5

Beads (PS Spec): Single fluorochrome Brighter -better for generating point spread functions for deconvolution

Inspec Intensity beads: Measure dynamic range

Affects of deep imaging (90 μ m) and collar settings on spherical aberration and psf of 60X/NA1.2w

Spherical aberration dependent on wavelength, depth, RI

Bespoke systems in Micron

User systems

- Palm/TIRF system now within facility
- CryoSIM (at Diamond) A user available facility at Beamline 24 for correlative imaging.

Systems in development

- DeepSIM upright SIM with AO and remote focus
- 4PI super high resolution imaging
- CryoSIM II add AO to CryoSIM setup
- Aurox Clarity AO system add AO to a novel fast confocal system

Palm/TIRF

CryoSIM

DeepSIM

4Pi microscope

CryoSIMII

Aurox Clarity AO

Justification for Bespoke Systems

- Often necessary for specific specialised problems.
- Easily optimised for several parameters, speed, sensitivity etc...
- Can provide extremely flexible systems

BUT think hard as it is likely to be harder, longer and more expensive than at first thought.

Bespoke Microscope Example - DeepSIM

- Live fluorescence imaging
- Simultaneous electro-physiology
- Rapid Z stacks, with minimal sample disruption
- Deeper imaging utilising Adaptive Optics (AO)

Live imaging

Upright microscope

Fast imaging

Fast Z movement issues

AO - Remote Focus

AO - Aberration correction

Image based correction strategy

$$a = -\frac{b(M_{+} - M_{-})}{2M_{+} - 4M_{7} + 2M_{-}}$$

At least three measurements are necessary for quadratic maximization

Image based correction strategy: Fourier metric

Noise masks of Fourier transforms with varying amounts of Spherical aberration applied

Sensorless correction: Fourier Metric

Noise masks of Fourier transforms with varying amounts of Spherical aberration applied

Spherical aberration amplitude fitting

Sensorless correction: Fourier Metric

NMJ before correction Sensorless correction routine on NMJ dataNMJ after correction

Start with simple design

Add complexity

Drosophila Neuro-muscular Junction: Pseudo-widefield

Pseudo-widefield without AO correction

Pseudo-widefield with AO correction

Drosophila Neuro-muscular Junction: 3D SIM reconstruction

3D SIM reconstruction without AO correction reconstruction with AO correction

Control software

Python - Microscope

- Python low level control of hardware
- Exports devices with a standard API
- Can control system entirely from python

Cockpit

- GUI built onto of microscope
- Allows easy control of even complex microscopes
- Intuitive control and sample navigation

Bespoke Microscopes

Why bother?

Specific applications -better than commercial microscopes

Flexibility

Cost

Bespoke Microscopes

Why NOT to bother?

- Salary of physicist/engineer required
- Long building time required (it's hard)
- Not supported by a company (repairs are costly and lengthy)
- Not always easy to use by biologists

How expensive is it?

Building costs

Hardware ~£100-250k

Salaries 1-3 years (~£50-£150)

Total cost ~£150-350k

Commercial OMX system ~£400k

Summary

- Recap on image formation
- Fluorescent beads showing aberrations
- Examples of bespoke development
- Bespoke microscope building projects pro's and cons.

