Picture courtesy of Mathew Stracy

Nanometer resolution by localisation microscopy

Localising single molecules

Single labelled protein

Many labelled proteins

Localisation-based super-resolution imaging

microtubulin

Switch off

Switch on subset

Localize

Some history

SCIENCE

Nobel Laureates Pushed Limits of Microscopes

By KENNETH CHANG OCT. 8, 2014

Stefan Hell William Moerner Eric Betzig

Step 1: Label your molecule with a fluorescent probe

fluorescent proteins

synthetic fluorophores

tag labelling

Sample

• High numerical aperture objective

- High numerical aperture objective
- Laser excitation

- High numerical aperture objective
- Laser excitation
- Sensitive camera (such as an Electron multiplying CCD)

Step 3: Get rid of all background fluorescence

- Clean coverslips
- Low fluorescence growth media
- Narrow illumination area

Detection objective

How to get nm precision

Determine center of emission pattern by fitting a 2D Gaussian to the PSF

$$I(x, y) = I_0 + A \cdot e^{-\frac{(x - x_c)^2}{2s_x^2}} \cdot e^{-\frac{(y - y_c)^2}{2s_y^2}}$$

for 10⁴ photons precision of 125nm/100 ~ 1.25 nm (!)

Yildiz et al (2003) Science 300, 2061

Measuring myosin V steps using FIONA

(Eluorescence Imaging with One-Nanometer Accuracy)

Yildiz et al (2003) Science 300, 2061

Measuring myosin V steps using FIONA

(<u>Fluorescence Imaging with One-Nanometer Accuracy</u>)

Photoactivation and photo-switching

Switch off

Switch on subset

Photoactivation and photo-switching

PALM: Photoactivated Localization Microscopy

- Photoactivatable fluorescent proteins (PA-GFP, PAmCherry etc)
- Irreversibly convert from an initial non-fluorescent state to a fluorescent state upon irradiation with 405 nm (UV) light.
- Photoactivation levels depend on intensity of 405 nm

STORM: Stochastic Optical Reconstruction Microscopy

- Also dSTORM, GSDIM depending on fluorophores used
- Originally Cy3-Cy5 pair, photo-switchable synthetic fluorophores, conventional organic dyes
- Frequently fluorophores are conjugated to antibodies for immunostaining
- Transitions to a long lived dark state, and excitation with UV to green illumination recovers the fluorescent state.
- Requires a 'switching buffer' with an oxygen scavenger (glucose oxidase), and a reducing agent (thiol such as β-mercaptoethylamine (BME))

Photoactivation and photo-switching

Dempsey et al (2012) Nat Methods, 8(12): 1027-1036

3D localisation microscopy

Gaining z position information with astigmatism

3D localisation microscopy

Gaining z position information with astigmatism

alpha-tubulin labelled with Alexa 647

Pros and cons of localisation microscopy

CONS:

- Slow (tens of thousands of frames needed)
- Not the best for live cell imaging*

Crowded field localisation algorithms allow for faster imaging

Pros and cons of localisation microscopy

CONS:

- Slow (tens of thousands of frames needed)
- Not the best for live cell imaging*
- Requires using particular fluorophores and/or buffers

PROS:

- Comparatively simple microscope design and analysis
- Can easily extract quantitative information

Pros and cons of localisation microscopy

CONS:

- Slow (tens of thousands of frames needed)
- Not the best for live cell imaging*
- Requires using particular fluorophores and/or buffers

PROS:

- Comparatively simple microscope design and analysis
- Can easily extract quantitative information
- Can be combined with

SINGLE PARTICLE TRACKING!!

Single-molecule tracking PALM

Manley et al. Nature Methods (2008)

Single-particle tracking PALM

Single-particle tracking PALM

Mathew Stracy

Single-particle tracking PALM

Mathew Stracy

Long exposures

Long exposures

Etheridge et al. NAR 2014

Long exposures

Hansen et al. eLife 2017

