

- Basics Images as Arr Numeric types Tools
- ImageJ
- Segmentation Logical images Threshold Logical operations Object properties
- Image alignment
- Filters Explained
- Convolution
- Summary

Microscope Image Analysis

David Miguel Susano Pinto

Micron Advanced Microscopy Course, 2019

- Basics
- Images as Array Numeric types Tools
- Segmentatic Logical images
- Threshold Logical operation
- Object properties Morphology
- lmage alignment
- Filters Explained
- Convolution
- Fancier filters
- Summary

Microscope Image Analysis in 3 parts

- 1 What is in a microscope image
 - What is in a image?
 - Image display
 - Image acquisition
- 2 Careful with your data
 - File formats
 - OMERO
 - Figure preparation
- 3 Images as N dimensional numeric arrays
 - N dimensional images
 - Spatial filters
 - Morphology
 - Connected components
 - Tools

Basics

- Images as Array Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology

Image alignmen

- Filters Explained Convolution Fancier filte
- Summary

Pixel data

63	84	119	172	219	225	182	135	79	51	36	24	23	19	15	-1	14	14	8	0	-4	7	18
78	84	104	170	223	224	196	118	84	49	36	28	16	11	25	4	15	13	8	-4	9	11	7
61	80	115	153	209	204	170	113	73	46	41	29	9	17	11	11	0	12	-2	2	2	3	23
72	98	121	160	190	207	178	116	68	50	29	22	17	19	7	27	15	9	-3	-4	14	5	8
64	90	132	167	210	214	180	115	71	37	36	31	13	15	9	8	15	6	0	5	-14	4	12
75	93	124	169	216	229	196	107	71	56	19	18	22	24	7	5	15	11	8	-1	12	6	7
97	87	128	193	210	225	193	111	85	47	27	27	21	12	5	2	-1	4	1	-3	7	2	-10
103	108	134	180	201	233	185	115	55	38	26	25	15	20	18	6	2	2	1	4	-3	-13	0
142	132	161	216	238	223	160	90	59	45	17	10	9	13	10	11	4	-9	5	2	7	0	5
172	162	175	231	239	238	155	88	48	28	24	17	15	13	0	14	c	11	-3	4	9	0	-10
226	219	230	260	265	236	161	92	43	31	31	11	5	11	7	13	19	9	18	-11	•9	-2	8
234	247	256	302	311	253	174	97	48	27	12	15	7	7	0	16	8	5	3	-4	0	-6	4
260	263	297	346	349	303	196	126	65	27	30	24	3	6	7	١	12	3	9	0	-2	-13	2
244	293	340	388	399	321	223	130	74	29	24	30	17	4	3	11	0	8	7	-3	-2	-2	-2
209	273	359	423	436	365	264	141	80	57	32	45	13	3	18	8	-7	0	-6	4	-1	-2	-3
176	253	342	430	443	394	291	161	86	59	37	23	18	5	0	7	8	11	1	-3	13	-5	-2
152	218	311	425	470	420	325	208	111	66	52	29	28	9	4	7	8	4	-7	11	-18	-13	-2
129	199	294	413	469	441	384	257	148	111	69	34	20	20	6	3	15	4	-2	-6	-3	-10	9
140	206	294	385	439	442	365	310	223	157	114	76	45	28	9	21	5	15	-4	-13	0	-5	-1
173	233	309	354	392	375	333	303	261	214	135	92	51	47	18	12	13	12	20	-9	4	1	15
221	278	300	321	306	293	286	279	250	231	184	142	108	67	41	18	13	5	8	-8	0	7	5
267	302	291	244	228	211	201	215	241	227	205	184	136	110	68	51	26	11	8	3	0	8	-3
284	279	257	202	133	129	137	151	183	213	209	188	187	155	109	69	49	26	25	8	8	18	-4
275	248	191	143	95	85	87	98	122	166	184	192	206	194	176	135	98	50	44	19	21	0	1

Plan

Basics

- Images as Array Numeric types Tools Image I
- Segmentation Logical images Threshold Logical operations Object properties
- Morphology
- lmage alignment
- Filters
- Explained
- Convolution
- Summarv

Plan

Basics

- Images as Array Numeric types Tools Image I
- Segmentatio Logical images Threshold Logical operations
- Morphology
- Image alignment
- Filters
- Explained
- Convolution
-
- Summary

Plan

Basics

- Images as Array Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties
- lmage alignment
- Filters
- Explained
- Convolution
- Summary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Plan

Basics

Images as Array Numeric types Tools

Segmentation Logical images Threshold Logical operations Object properties

lmage alignment

Filters Explained Convolution Fancier filte

Summary

Serra da Freita

Plan

Basics

- Images as Array
- Numeric type Tools
- ImageJ
- Segmentation
- Logical imag
- Threshold
- Logical operations
- Manakalami
- lmage alignment
- Filters Explained
- Convolution
- Summary

Plan

Basics

Images as Arra Numeric types Tools ImageJ

Segmentation Logical images Threshold Logical operations Object properties Morphology

Image alignmen

Filters Explained Convolutio Fancier filt

Summary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Basics

- Images as Array Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology
- Image alignmen
- Filters Explained Convolutic Fancier filt
- Summary

Images as Signals

う ク ク ・ ゴ ・ イ 川 ・ イ 山 ・ ヘロ・

Images as Surfaces

Plan

Basics

Images as Array Numeric types Tools

Segmentation Logical images Threshold Logical operations Object properties Morphology

Image alignmen

Filters Explained Convolutio Fancier filt

Summary

Images as ND Arrays

Plan

Basics

- Images as Arrays Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology
- Image alignment
- Filters Explained Convolution
- Summary

- \circ x and y
- time
- z (volume)
- wavelength
- phase
- stage angle

Think "data", not "picture"

Plar

Basics

- Images as Array Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology

lmage alignment

Filters Explained

Fancier filter

Summary

Localisation Microscopy

Diffraction limited fluorescence images

Plar

Basics

- Images as Arrays Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology
- lmage alignment
- Filters Explained Convolution Fancier filte
- Summary

Localisation Microscopy

Diffraction limited fluorescence images

Localised fluorophores

Images as Arra Numeric types Tools

Segmentation Logical images Threshold Logical operations Object properties

lmage alignment

Filters Explained Convolution Fancier filte

Summary

◆□ ▶ ◆昼 ▶ ▲目 ▶ ▲ ● ◆ ● ●

Plan

Basics

Images as Array Numeric types Tools ImageJ

Segmentatio Logical images Threshold Logical operations Object properties Morphology

lmage alignmen

Filters Explained Convolutior Fancier filte

Summary

Plan

Basics

- Images as Arrays Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology
- lmage alignment
- Filters Explained Convolutio
- Fancier filters
- Summary

もちゃん 聞き ふぼや ふぼや ふしゃ

Basics

- Images as Arrays Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology
- lmage alignment
- Filters Explained Convolution
- Fancier filters
- Summary

Check line profile of a bead.

Plan

Basics

- Images as Array Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology
- Image alignmen
- Filters Explained Convolution Fancier filte
- Summary

Localisation imaging

Plan

Basics

- Images as Array Numeric types Tools ImageJ
- Segmenta Logical image
- Threshold
- Logical operation
- Morphology
- Image alignment
- Filters
- Explained
- Convolution
- Summary

Table of coordinates.

| □ ▶ ∢ □ ▶ ∢ 亘 ▶ ∢ 亘 → ∽ Q Q Q

Localisation imaging

Plan

Basics

- Images as Array Numeric types Tools ImageJ
- Segmentati Logical images Threshold
- Logical operation
- Morphology
- Image alignment
- Filters
- Explained
- Experier filters
- Summary

Table of coordinates. What is the pixel size?

Basics

- Images as Array Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations
- Morphology
- Image alignmen
- Filters
- Explained
- Convolution
- Summary

Array of Discrete Photodetectors

Image Reconstruction

Plan

Basics

- Images as Arrays Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties
- lmage alignment
- Filters Explained
- Eancier filters
- Summary

- Localisation Microscopy (STORM/PALM)
- Structured Illumination
 - Two step process

Integer types

2 ¹	2
2 ²	4
2 ³	8
24	16
2 ⁵	32
2 ⁶	64
2 ⁷	128
2 ⁸	256
2 ⁹	512
2 ¹⁰	1024
2 ¹¹	2048
2 ¹⁵	32768
2^{16}	65536

Plan

B'asics Images as Arra Numeric types Tools ImageJ

Segmentation Logical images Threshold Logical operations Object properties Morphology

lmage alignment

Filters Explained Convolution

Summary

Integer types

Plan

Basics

Images as Array

Numeric types

ImageJ

Segmentation Logical images Threshold Logical operations Object properties Morphology

lmage alignmen

Filters Explained Convolutio

Summary

	unique values	min	max
2 ¹	2	-1	0
2 ²	4	-2	1
2 ³	8	-4	3
 2 ⁸	256	-128	127
2 ³²	4294967296	-2147483648	2147483647

Basics

lmages as Array Numeric types Tools

ImageJ

Segmentation Logical images Threshold Logical operations

Morphology

lmage alignment

Filters

Explained

E . Ch

Summary

Floating points — sometimes incorrectly called 32 bit.

Tools for image analysis

- Plan
- Basics
- Images as Arra Numeric types **Tools**
- TOOIS
- ImageJ
- Segmentatio
- Logical operatio
- Object propertie
- Morphology
- lmage alignmen
- Filters
- Explained
- Convolution
- Summary

Tools for image analysis

Plan

- Basics
- Images as Array Numeric types **Tools**
- ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology
- lmage alignmen
- Filters Explained Convolution
- i ancier micers
- Summary

ImageJ / FIJI

Python with NumPy

Octave

R

- Basics
- Images as Array Numeric types **Tools**
- ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology
- lmage alignmen
- Filters Explained Convolution
- Summary

Tools for image analysis

- CellProfiler
- Icy
- OMERO
- KNIME

- Python with NumPy
- Octave
 - R

- Basics
- Images as Array Numeric types **Tools**
- ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology
- lmage alignmen
- Filters Explained Convolution
- Summary

ImageJ / FIJI

Python with NumPy

Octave

R

Tools for image analysis

- CellProfiler
- Icy
- OMERO
- KNIME
- Imaris
- softWoRx
- Volocity
- Matlab
- Metamorph
- Image-Pro Plus
- Huygens
- Mathematica
- · . . .

ImageJ

Plan

Basics

- Images as Arrays Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology
- lmage alignment
- Filters Explained Convolutio
- Summarv

- de facto standard in medical sciences
- libre software (free and open source)
- massive helpfully massive community

ImageJ1

ImageJ2

FIJI

Basics

Images as Array Numeric types Tools ImageJ

Segmentation

Logical images

- Threshold Logical operations Object properties Morphology
- lmage alignment
- Filters
- Convolution
- Fancier filters
- Summary

Typical problems

Concentration

Protein expression, number of complexes.

Co-localization

Do two overlap and correlate?

Dynamics

How fast does it move?

Basics

Images as Array Numeric types Tools ImageJ

Segmentation

Logical images

- Threshold Logical operations Object properties Morphology
- lmage alignment
- Filters Explained
- Convolution
- Fancier filters
- Summary

Typical problems

Concentration

Protein expression, number of complexes. Co-localization

Do two overlap and correlate?

Dynamics

How fast does it move?

All require identifying a region of interest.

Logical (binary) images Very useful as masks

lmage alignment

Logical images

⊢ilters Explained Convolutio

Fancier filters

Summary

Logical images

Logical (binary) images Very useful as masks

▲ロト▲聞▶▲臣▶▲臣▶ 臣 めへの

Manual threshold

Plan

Basics

Images as Array Numeric types Tools Image I

Segmentation

Logical images

Threshold

Logical operations Object properties Morphology

lmage alignment

Filters Explained Convoluti

Fancier filters

Summary

Summary

- bimodal histogram
- reduce intra-class variance (spread)

Logical operations

Plan

- Basics
- Images as Array Numeric types Tools
- Segmentatio Logical images Threshold
- Logical operations Object properties
- lmage alignment
- Filters Explained
- Convolution
- Fancier filters
- Summary

x AND y

x OR y

NOT x

Logical operations

Plan

- Basics
- Images as Array Numeric types Tools
- Segmentatio Logical images Threshold
- Logical operations Object properties Morphology
- Image alignment
- Filters Explained Convolution
- Summary

x AND y x OR y NOT x

Example: split plant cells with cell membrane.

colocalisation

Plan

Basics

- Images as Array Numeric types Tools ImageJ
- Segmentatior Logical images Threshold
- Logical operations Object properties Morphology
- lmage alignment
- Filters Explained Convolution
- Summary

colocalisation

∃ ∽ へ (~

- Basics
- Images as Arrays Numeric types Tools ImageJ
- Segmentatio Logical images Threshold
- Logical operations
- Object properties Morphology
- lmage alignment
- Filters
- Explained
- Convolution
- Summary

Object properties Particle/Region/ROI properties/measurements

These are always one button or one line of code. The only problem is getting to this point.

- area
- eccenctricity
- centroid
- center of mass
- integrated density
- min and max
- perimeter

- Basics Images as Arra Numeric types Tools
- ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology
- Image alignmen
- Filters Explained Convolutio Fancier filt
- Summary

Erosion and dilation

Plar

Basic

- Images as Array Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology
- Image alignment
- Filters Explained Convolution Fancier filter
- Summary

Erosion and dilation

- Basics
- Images as Array Numeric types Tools Image I
- Segmentation Logical images Threshold Logical operations Object properties Mornhology
- Image alignment
- Filters Explained Convolution
- Fancier filters
- Summary

Reconstruction from markers

Watershed

Plan

Basics

- Images as Array Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology
- Image alignment
- Filters Explained Convolution Fancier filte
- Summary

Basics

- Images as Array Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology
- lmage alignment
- Filters Explained Convolution Fancier filters
- Summary

Original

Erosion

Gradient (dilate - erode)

Image gradient

Moving image

Why doing it?

Plan

Basics

Images as Array Numeric types Tools ImageJ

Segmentation Logical images Threshold Logical operations Object properties Morphology

Image alignment

Filters Explained Convolution Fancier filter:

Summary

Basics

- Images as Array Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology

Image alignmen

- Filters Explained Convolution
- Summary

geometric transformation

What happens when you:

Linear interpolation

Plan

- Basics
- Images as Array Numeric types Tools
- ImageJ
- Segmentatio Logical images Threshold Logical operations Object properties
- Image alignment
- Filters
- Explained
- Convolution
- Summarv

Bilinear interpolation

column -15 14 14.5 20 210 91 150.5 20.2 146.1 row ¥ A 162 128.5 95

Plan

- Basics
- Numeric types Tools
- ImageJ
- Segmentatio Logical images Threshold Logical operations Object properties

Image alignment

Filters

- Explained
- Convolution
- -

- Basics
- Images as Array Numeric types Tools
- Segmentation Logical images Threshold Logical operations Object properties
- Image alignmen
- Filters
- Explained
- Convolution Fancier filters
- Summary

Background correction

Subtract mean of a known background region (darks).Many cameras (not-microscopes) do this.

- Basics
- Images as Array Numeric types Tools Image I
- Segmentation Logical images Threshold Logical operations Object properties Morphology
- lmage alignmen
- Filters
- Explained Convolution
- Summary

Local means

- Basics
- Images as Array Numeric types Tools Image I
- Segmentation Logical images Threshold Logical operations Object properties Morphology

Image alignmen

Filters

Explained Convolution

Summary

Local means Mean

Median

Mean as convolution kernel

Plan

Basics

- Images as Array Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Morphology

lmage alignmen

Filters

Explained

Convolution

Summary

Basics

- Images as Array. Numeric types Tools ImageJ
- Segmentation Logical images Threshold Logical operations Object properties Mombalogy

lmage alignmen

Filters Explained Convolution

Fancier filter

Summary

Non-local means patch based denoise

Gaussian filter as weigthed mean

0.011 0.011 0.014 0.017 0.018 0.017 0.014 0.014 0.019 0.023 0.024 0.023 0.019 0.014 0.017 0.023 0.027 0.029 0.027 0.023 0.017 0.018 0.024 0.029 0.030 0.029 0.024 0.018 0.017 0.017 0.023 0.027 0.029 0.027 0.023 0.023 0.014 0.014 0.019 0.024 0.023 0.019 0.011 0.014 0.017 0.018 0.017 0.014 0.011

Plan

- Basics
- Images as Array Numeric types Tools
- ImageJ
- Segmentati Logical images Threshold
- Object propertie
- Morphology

lmage alignmen

Filters

- .

Fancier filters

Summary

- Basics
- Images as Array Numeric types Tools
- Segmentation Logical images Threshold Logical operations Object properties Mombology

Image alignment

- Filters Explained
- Fancier filters
- Summary

Edge detection Sobel operator

1D filter

 $\begin{bmatrix} +1 & 0 & -1 \end{bmatrix}$

- Basics
- Images as Array Numeric types Tools
- Segmentation Logical images Threshold Logical operations Object properties Mombology
- lmage alignment
- Filters Explained
- Convolution
- Fancier filters
- Summary

2D filter(s)

$$\begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix}$$
$$\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

-1 +2 +1

Edge detection Sobel operator

A final word

Plan

- Basics
- Images as Array. Numeric types Tools
- Segmentatior Logical images Threshold Logical operations
- Object properties Morphology
- lmage alignmen
- Filters Explained Convolution Eancier filters
- Summary

Limitations such as:

- only black and white;
- only 8 bit;
- only 2D images;
- only 3D images;
- are limitations of the implementation.

Summary

Plan

- Basics
- Images as Array Numeric types Tools
- Segmentation Logical images Threshold Logical operations
- Morphology
- lmage alignment
- Filters Explained Convolutior
- Summary

- Images are just N dimensional array of numbers
- Mathematical operations can be extended to images
- Thresholding to create masks
- Filters for processing image
- Morphology to identify shapes