# Introduction to Image Analysis

#### Micron Advanced Microscopy Course, 2017

Maryam Qurashi, David Pinto

Micron Biolmaging Unit (the basement)

# Microscope Image Analysis in 3 Parts

- 1. What is in a microscope image?
  - What is in an image?
  - Pixels and display
  - ImageJ
  - Considerations for acquisition
- 2. Arrays, Images, Dimensions
  - N Dimensional images
  - Filtering
  - Morphology
  - Connected Components
- 3. Don't botch your data
  - File formats
  - Data storage
  - OMERO



(2,1,3) (2,2,3) (2,3,3) (2,3,3) (2,3,3) (2,3,3) (3,3,3) (3,4,3) (3,1,3) (3,2,3)  $(\overline{3},3,3)$  (3,4,3) (3,4,3) (1,2,2) (1,3,2) (1,4,4) [4,2,3) (4,3,3) (4,4,3)

2,1,2) (2,2,2) (2,3,2) (2,4,2 3,1,2) (3,2,2) (3,3,2) (3,4,2

) (2,2,1) (2,3,1) (2,4 ) (3,2,1) (3,3,1) (3,4





## What is in an image?



DeltaVision Confocal Microscope Image



# Metadata

#### Substack (1) 136.55x136.55 microns (512x512); 8-bit; 256K



- Emission wavelength : 525 nm
- Excitation wavelength : 475 nm
- Exposure time : 0.1 s
- Objective :
- pixel size : 0.2667 x 0.2667 μm<sup>2</sup>
- Deconvolved
- 8bit conversion after contrast adjustment
- Full range displayed
- Plus treatment
- Liver cells
- Knockout

## Digitization: Sampling and Quantization

An image *function* is digitized both spatially and in amplitude



Digitization of spatial coordinates (x, y) is image sampling

Digitization of amplitude is gray-level quantization (*x*, *y*, A) = (4, 15, 423)





#### Bit-depth and Dynamic Range

Storage of this data is limited by bits. Discrete quantization of gray values is expressed as integer powers of 2

| 0 black<br>1 white          | 2 <sup>1</sup> = 2 x 1 = 2      |         |   |
|-----------------------------|---------------------------------|---------|---|
|                             |                                 | 1 bit   |   |
| 0 0 black<br>1 0 dark gray  | $2^2 - 2 \times 2 - 4$          | 2 bits  |   |
| 0 1 light gray<br>1 1 white | $Z^{-} - Z X Z - 4$             | 3 bits  |   |
|                             |                                 | 4 bits  |   |
| 000                         |                                 |         |   |
| 100                         |                                 | 5 bits  |   |
| 010                         |                                 | 8 hits  |   |
| 001                         | $2^3 = 2 \times 2 \times 2 = 8$ |         |   |
| 110                         |                                 | 16 bits |   |
| 101                         |                                 |         |   |
| 011                         |                                 | 0       | 1 |
| 111                         |                                 |         |   |

#### Histograms of pixel values and image display







IIII Histogram of Substack − □ × 300x240 pixels; RGB; 281K





III Histogram of Substack − □ × 300x240 pixels; RGB; 281K





#### RGB



If you ever get an RGB image, something has gone wrong

RGB Images are not accurate for fluorescence microscopy.

#### Look up tables or colour maps



A multichannel image is just multiple grayscale images

#### Scales in colour







#### Tools for processing and analysis



## Considerations for Aquisition

- The system must be correctly set up and aligned. Check this with a PSF if necessary
- The specimen should not cause undue optical aberration
- Avoid saturation and underflow but fill the dynamic range while keeping settings the same across all images
- Use a HiLo LUT, beware of intensity scaling
- Check dark signal with a background image
- Be aware of x,y,z optical resolution of the system and sample appropriately
- Take care with signal to noise limitations

#### Improving Signal to Noise during Acquisition



#### How does noise affect my resolution?

#### Resolution Contrast noise

Image series collected by decreasing the excitation lamp intensity from 100% to 50%, 10%, 1%, and 0.1%



softwoRx API



#### Micron

#### Come speak with us!



#### Figure Preparation Guidelines

- Carry out all processing and analysis before making figures by using software for raster images (i.e. ImageJ)
- Use vector graphics for lettering, arrows, diagrams, arranging panels (Inkscape)
- Both can rotate, size and crop
- Do not use Office suite of applications: Word, Powerpoint, Keynote, Impress, Writer
- Be consistent with processing steps, especially contrasting