Bespoke Microscopes

Ian Dobbie ian.dobbie@bioch.ox.ac.uk

Overview

- OMX concept and development
- Super fast acquisition
- Bespoke microscope design pro's and cons

Bespoke Microscopes

Why bother?

Specific applications -better than commercial microscopes

Flexibility

Cost

Some rules of thumb

- Clean and dust free environment
- Oscilloscope and soldering iron you will need them!
- Good tools and spare parts
- Important to think about user interface
- Important to think about continuity of the project and workflow of experiments
- Important to think about data analysis

Justification for Bespoke Systems

- Often necessary for specific specialised problems.
- Easily optimised for several parameters, speed, sensitivity etc...
- Can provide extremely flexible systems

BUT think hard as it is likely to be harder, longer and more expensive than at first thought.

How expensive is it?

Building costs

Hardware ~£100-250k

Salaries 1-3 years (~£50-£150)

Total cost ~£150-350k

Commercial Confocal ~ £250k

Commercial OMX system ~£600k

OMX Design Goals

- Extreme stability
- Maximise emission sensitivity
- Double resolution with Structured illumination
- Maximise speed and timing reproducibility
- Extremely flexible hardware and software

Results

- No eyepieces
- Multiple beam paths
- Relatively bad excitation light efficiency
- Exotic dichroics (pass excitation reflect emission)
- Complex hardware & software

The complete Results

Laser bed

Dark/clean room

Control computer

Promise of the control of the contro

LMX mapping microscope

Oxford additions

- Leverage a Software Development Kit (FastZ)
- Add STORM path to V2 OMX
- Next Generation OMX (OMXT/DeepSIM/ CryoSIM)

Super Fast Acquisition (FastZ)

- Ramp the Z position instead of stepping it
- Take images as fast as possible during ramp
- Delay between stacks to allow stage to return to initial position

Coventional widefield Z stack

20 Z planes as fast as possible

Coventional Z stack

Ramp Z stack

Comparison: FastZ to normal

FastZ - Results

Me31B-GFP Drosophila oocyte 25-slices, 8 stacks/s - 200 frames/s

OMX Advancesexamples

CryoSIM (Diamond)

DeepSIM

DeepSIM Aims

- Upright SIM system for simultaneous super-res neuro-physiology
- Fast for live cell imaging
- Flexible for multiple imaging modes and equipment control
- Adaptive optics to enable fast Z steps with dipping lenses and improve Z depth in superresolution

Locally developed control software - Cockpit

Why re-invent the wheel (or micromanager)

- Timing hardware based (3 options)
- Truly open source
- Multi-modal and usability

Bespoke Microscopes

Why NOT to bother?

- Salary of physicist/engineer required
- Long building time required (it's hard)
- Not supported by a company (repairs are costly and lengthy)
- •Not always easy to use by biologists SOFTWARE!

Example of Bespoke Microscopes

OMX-T microscope

Designed and built by John Sedat and Dave Agard, UCSF

Live PALM microscope

Designed and built by Stephan Uphoff and Achillefs Kapanidis, Micron Oxford

WOSM

Designed and built by Nick Carter and Rob Cross, Warwick University

Openspim

Designed and built by Pavel Tamacek and his team at Dresden MPI

Holographic microscope

Irwin Said and Richard Berry, Micron Oxford

Software options

- Lab view
- Micromanager
- DIY: SDKs C++, Python, Visual basic

Lab view example

Micromanager

http://valelab.ucsf.edu/~MM/MMwiki/

μManager

THE OPEN SOURCE MICROSCOPY SOFTWARE

OVERVIEW . DOWNLOADS . DOCUMENTATION . DEVICES . PROGRAMMING . SUPPORT . EVENTS . CREDITS . LOG IN

welcome to micro-manager!

News

- Micro-Manager Programmer Job Opening!
- ImageJ Conference
- [Open SPIM]
- Micro-Manager 1.4 Released
- Recap of Micro-Manager at 2011 ASCB meeting
- New Getting Started ScreenCast
- [Watch Micro-Manager in Action]
- Support for Nikon and

Caman BCI B

Micro-Manager Open Source Microscopy Software

µManager is a software package for control of automated microscopes. Together with the image processing application ImageJ, µManager provides a comprehensive, freely available, imaging solution.

Download the most recent version (1.4) from our website. Also check out our ScreenCast for a quick tour on getting started.

µManager has a simple and clean user interface, through which it lets you execute common microscope image acquisition strategies such as time-lapses, multi-channel imaging, z-stacks, and combinations thereof. µManager works with microscopes from all four major manufacturers (Leica, Nikon, Olympus and Zeiss), most scientific-grade cameras and

Locally developed control software - Cockpit

