SIR WILLIAM DUNN SCHOOL OF PATHOLOGY

Cryo-TEM

for MICRON EM course

Joanne Lo Dunn School Bioimaging Facility

joanne.lo@path.ox.ac.uk

18 Nov 2016

Cryo-EM.

Why and When?

Cryo-EM: Why and When?

- native state of sample (* fixed, * stained)
- for specimen difficult to be converted to 2D crystals
- specimens are observed in vitreous ice
- Cryo-fixation (e.g. cryo-plunging)
- thin enough for preservation & imaging
- low dose parameters required
- origin in 1980s (Bruggeller & Mayer; Dubochet & McDowall)

Cryo-EM

Principles of direct electron detectors

Detect electron directly on the chip (no scintillator)

Principles of direct electron detectors

Detect electron directly on the chip (no scintillator)

Direct electron detectors

 played a key role in the recent increase in the power of single particle electron cryomicroscopy (cryo-EM)

Ref: Direct Electron

Direct electron detectors

raw image

motion corrected

Fundamental challenges in biological samples

High vacuum damage

 Low signal-to-noise ratio (poor electron scattering, dose limitation)

Cryo electron microscopy

Henserson PNAS 2013

What else prevents us from achieving atomic resolution with biological samples

- Imperfect detectors
- Data analysis/software
- Image blurring
- Suboptimal samples
 - Sample purity & concentration
 - Particle density
 - Orientation preference
 - Ice thickness
 - Structural flexibility
 - Conformational heterogeneity
 - Compositional heterogeneity

Slide courtesy Xiaochen Bai

Ice thickness

Useful ice thickness

Thin ice: Cores populate

Contrast

Slide courtesy Xiaochen Bai

How small can my protein be?

Depends on what you want to achieve!

Ideal Sample

- Homogenous
- Stable (If not, e.g. GraFix)
- Good concentration
- Right thickness

Cryo-EM workflow

Plunge freezing

Vitrobot Mark IV

Schreiber et al. Nature 2011 De Fonseca et al. Nature 2011

Cryo-EM workflow

200C Arctica

Single particle analysis

Single particle analysis

2D projection

Particle picking

Single particle analysis

2D class averaging

3D reconstruction

Application of single particle

nature structural & molecular biology

Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design

Abhay Kotecha^{1,8}, Julian Seago^{2,8}, Katherine Scott³, Alison Burman², Silvia Loureiro⁴, Jingshan Ren¹, Claudine Porta^{1,2}, Helen M Ginn¹, Terry Jackson², Eva Perez-Martin², C Alistair Siebert¹, Guntram Paul⁵, Juha T Huiskonen¹, Ian M Jones⁴, Robert M Esnouf¹, Elizabeth E Fry¹, Francois F Marce^{3,6} Bryan Charleston² & David I Stuart^{1,7}

2.8Å CryoEM Map of FMDV

Cryo-electron tomography

https://www.jove.co m/video/1943/electr on-cryotomographyof-bacterial-cells

LMB lecture-Tanmay Bharat

Take home message...

- Cryo-EM can be used to determine structures at native state
- Prepare best sample possible before EM
- Use negative staining: initial screening, homogeneity assessment
- Best use the technologies e.g. microscope, camera & softwares

Be persistent! And you'll get the high resolution information with cryo-EM

sample

Cryo-immobilization:

Focused-ion-beam (FIB)

milling

Marko et al. (2007) Nat. Meth. 4: 215-217. Rigort et al. (2010) JSB **172**: 169-173.

Plunge-freezing (< 5 µm)

direct

CryoEM / Tomography

High pressure-freezing (200-300 µm)

CEMOVIS

Cryo-sectioning (< 138 K)

sample thickness limit for cryoET: ~ 1 µm (Lučić et al. (2005) Ann. Rev. Biochem. 74: 833-865)