Confocal Microscopy

(Increasing contrast and resolution using optical sectioning)
Lecture 7
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3 Flavours of Microscope

Problem:
Out of Focus
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—: short History of Confocal Microscope
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—: short History of Confocal Microscope

Confocal “concept’ patented by Marvin Minsky in 1957
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Confocal “concept’ patented by Marvin Minsky in 1957

Eggar and Petran developed “spinning disc” confocal in late 1960s
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Brakenhoff, Stelzer developed “stage” scanning confocal in
late 1970
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Brakenhoff, Stelzer developed “stage” scanning confocal in
late 1970

White, Amos and Wilson developed the MRC500 point scanning confocal
-Marketed commercially in 1987
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Comparison

Widefield Vs Confocal

Widefield Confocal

Out of focus light ‘blurs’ image Out of focus light is blocked
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Principle of Confocal Microscopes

Pinhole

Pinhole diaphragm in the
Conjugated focal plane =
CONFOCAL

in focus light (from the optical section) passes
through the pinhole and into the detector
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Pinhole —

blocks out-of-focus light

light from below the optical section crosses infront of the
pinhole and doesn’t pass through the pinhole aperture
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IE Pinhole —
| blocks out-of-focus light

light from above the optical section also doesn’t
pass through the pinhole aperture

Wednesday, 16 November 16



Confocal R Laser
b Scanning
Spinning discl ,
>

Wednesday, 16 November 16



Wednesday, 16 November 16



Laser Scanning Confocals are great to
get ‘pretty’ images
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Laser Light Source

Laser Emission Spectra

Krypton Emission Spectrum
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AOTF

Acousto-Optic Tunable Filter

Acoustic

s acousto-optic effect:

Acoustic wave excited within the
guartz gives rise to variations in the
refractive index

e
5':
-
'

The wavelength of the diffracted
light is dependent on the acoustic
frequency in the quartz. By tuning
the frequency of the acoustic wave,
the desired wavelength of the optical
wave can be diffracted acousto-
optically.

= 3
‘f
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AOTF

Acousto-Optic Tunable Filter
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AOTF

Acousto-Optic Tunable Filter
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Acousto-Optic Tunable Filter
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AOTF

Acousto-Optic Tunable Filter
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Quick On/Off of lasers
Very fast changes between excitation wavelengths
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Galvo Scanning Mirrors

X-Scan '\ _» Y-Scan
|
Galv'ain:(r)r:eter- J Laser

Mirror
Translation (a)
\ -—
. Mirror
Slide Specimen .0 clation

Laser Point-Scanning
Confocal System

Sample excited at one point at a time

Relatively slow
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l Pinhole — Optical Sectioning

FWHM-=Full Width Half-Maximum
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l Pinhole — Optical Sectioning

Shorter the wavelength the
thinner the optical section

NA

FWHM-=Full Width Half-Maximum

Wednesday, 16 November 16



Pinhole — Optical Sectioning

Shorter the wavelength the Diameter of the pinhole: Smaller
thinner the optical section pinhole thinner optical section

| \
(e

FWHM-=Full Width Half-Maximum
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Shorter the wavelength the Diameter of the pinhole: Smaller
thinner the optical section pinhole thinner optical section

FWHM-=Full Width Half-Maximum The higher the NA.
the thinner the section
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Shorter the wavelength the Diameter of the pinhole: Smaller
thinner the optical section pinhole thinner optical section

FWHM-=Full Width Half-Maximum The higher the NA.
the thinner the section

Weak signal > open pinhole > more light but thicker section
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Confocal enables
3D reconstruction

SPECIMEN IMAGE

Optical
section
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Confocal enables
3D reconstruction

SPECIMEN IMAGE
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Confocal enables

3D reconstruction
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5] Confocal enables
| )
= 3D reconstruction

Adult Drosophila head (C. Rezeval Goodwin Lab)
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2] Confocal enables
| )
= 3D reconstruction

v .
Adult Drosophila head (C. Rezeval Goodwin Lab)
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Spectral Unmixing
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Spectral Unmixing
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Spectral Unmixing

Autofluorescence

Light emitted from
fluorophore as a spectrum
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Autofluorescence

Photomultiplier

P b ad Grating J E .

Light emitted from ‘

1
fluorophore as a spectrum > Vadable
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|
Confocal
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Spectral Unmixing

Autofluorescence

Defraction grating separates
wavelengths over physical
area

Photomultiplier
Diffragtfo

M A T Gr d .
Waveleogth (o :

Light emitted from ‘

1
fluorophore as a spectrum > Variable

/ Slit

\
/ Mirror

|
Confocal
Pinhole
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Spectral Unmixing

Autofluorescence

Defraction grating separates
wavelengths over physical
area

Photomultiplier
Diffragtfo

weogth (=

Light emitted from .

fluorophore as a spectrum > Varifible
t

4

\
/ Mirror

|
Confocal
Pinhole

Variable slit lets through only
certain wavelengths
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At each pixel:
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1 . Duffraction
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Spectral Unmixing

H . Duffraction
Phot |
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Match the summed spectrum with all possible summed combinations from a library
At each pixel you therefore know the proportion of each fluorophore present
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Spectral Unmixing
removal of autofluorescence

Autofiluorescence Autofluorescence
Removed

EGFP-Actin
Signal

At each pixel:

Calculate the proportion of the pixel is due to autofluorescence.
Subtract the autofluorescence from the ‘true’ GFP value.
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Incoming
Photon\ Window
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Very Low Noise
Huge Signal Amplification (~1x10)
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‘Airy-Scan’ technology

Small Pinhole, signal loss but resolution gain..
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‘Airy-Scan’ technology

Small Pinhole, signal loss but resolution gain..

Normalized to 2 AU Intensity

However, constricting the pinhole
actually yields a drastic reduction in
signal below 1 AU
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‘Airy-Scan’ technology

Small Pinhole, signal loss but resolution gain..

Normalized to 2 AU Intensity

Normalized to Peaks

However, constricting the pinhole
actually yields a drastic reduction in
signal below 1 AU

Small pinhole diameters lead to improved
resolution steadily until about 0.2 AU, results
in deeper dips between two objects
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‘Airy-Scan’ technology

let through all the emitted light
capture 0.2AU on each detector

* 32 GaAsP detectors
in hexagonal lattice

» Each detector
approximately 0.2 AU
in diameter

» Total detection area
approximately 1.25
AU in diameter

+ Simultaneous
improvement in
resolution and
signal
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‘Airy-Scan’ technology

point of light scanned with | AU ‘standard’ detector

PH=1AU

A

Intensity

——

» -/ o \P}

excitation G/ | ~ "

detection ‘ . . Q . ‘ ‘ are scanned in sync
t } t I } } } —

~ 240 nm

“~ Y

A point-like emitter generates a
diffraction limited pattern (~ PSF)

Excitation and detection

At1 AU the PSF is
mapped directly 1:1
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‘Airy-Scan’ technology

point of light scanned with 0.2AU ‘Airyscan’ detector
>increased resolution

PH=125AU . =9, A point-like emitter generates a
i » . diffraction limited patterm (~ PSF)
excitation &g
By collecting just the central element,
detection the PSF is weaker but narrower
subunit o e Al e ® ® e
~02AU o % >
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A
2
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‘Airy-Scan’ technology

each 0.2AU ‘Airyscan’ detector provides
>increased resolution

PH=1.25 AU L A point-Fke emitter generates a
. * » diffraction limited pattern (~ PSF)
excitation ¢ ol
By an element offset from the center,
detection the resolution is still improved
subunit . . . O . . .
~0.2 AU } } } . ! >
scan
A
= |
2 |
C ’
o9 A g
£ .
v i g - S n
== | l = - | 1 1 .
T T T T 1 1 3
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‘Airy-Scan’ technology

each 0.2AU ‘Airyscan’ detector info
is reassigned and summed

PH = 1.25 AU 2N
] { { 'S
I)&; O @ ‘s An Airyscan image is formed by:
excitation =R X ) 1. Reassigning the offset signal
4 A g 2. Summing the contributions
detection
subunit
~02AU % | | | % | >
scan
A
-
w
[ =
S
& L
ot : - ’2-/; - o
| | ; T: '..% % T .
scan
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‘Airy-Scan’ technology

effective PSF is now smaller.. > increased resolution (1.4x - |.7x)

Detector rings
1.0

3 2 1
0.8 4
o
) 0.6 4
3
o
Z 044
= 0.
D
s o
0.2 4

0.0 _~_¢Y

Radius [Airy units]
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‘bleed-through’
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minimising‘bleed-through’
Variable Slits
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minimising‘bleed-through’
Sequential Scanning

e 100 100
o L)
a -+ EGFP
g 80 E 80 " s
- - JEN EYFP
o - " \ p——
3 60 e 60 N\
s b i\
S ¢ B\ _EYFP
= 3 " — Emission
2 40 3 40 Jh Window
(T u 4
F 3 :
5 N 'l
= 20p = 20 l
E t E l
- i S .
Z 0ok - Z 0 : - i

400 450 500 550 450 550 600

Wavelength (Nanometers) Wavelength (Nanometers)

Wednesday, 16 November 16



minimising‘bleed-through’
Sequential Scanning
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minimising‘bleed-through’
Sequential Scanning

g
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minimising‘bleed-through’
Sequential Scanning

Absorption spectral profiles

100 100
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minimising
‘bleed-th rough’
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minimising
‘bleed-through’

Adjust detector slit widths
Use sequential scanning
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IE Confocal Microscopes
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IE Confocal Microscopes

Confocal
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Confocal Microscopes

Confocal Laser

B Scanning
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Confocal R Laser
b Scanning
Spinning discl ,
>
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Confocal Microscopes

Confocal R Laser
B Scanning
Spinning discl ,
>

Both are confocals
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Great for live cell imaging
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Great for live cell imaging

Can collect many images per seconc
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Yokogawa CSU-X1

Micro lens Array
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Yokogawa CSU-X1

Micro lens Array
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Yokogawa CSU-X1
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Yokogawa CSU-X1
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Yokogawa CSU-X1

Nipkow Disk

‘Motor S =%
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Yokogawa CSU-X1

Beamsplitter
V] 3 " | 3

To CCD camera
(Lecture 10)

Sample
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Yokogawa CSU-X1

Micro lens Array
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l Yokogawa Spinning Disc Confocal

Microlens Spinning Disk Optimization

just a pinhole array —
Optimised for ‘cofocality’
and ‘crosstalk’

too much light is blocked
from reaching the specimen
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l Yokogawa Spinning Disc Confocal

Microlens Spinning Disk Optimization

just a pinhole array —
Optimised for ‘cofocality’
and ‘crosstalk’

too much light is blocked
from reaching the specimen

Only 4% light passes through disc
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| Yokogawa Spinning Disc Confocal
|

just a pinhole array —
Optimised for ‘cofocality’
and ‘crosstalk’

too much light is blocked
from reaching the specimen

Only 4% light passes through disc
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l Yokogawa Spinning Disc Confocal

Microlens Spinning Disk Optimization

UUPY .. il

reaching the specimen
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I Yokogawa Spinning Disc Confocal
|

Microlens Spinning Disk Optimization

UUPY .. il

reaching the specimen

Typically 56% light passes through disc
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Yokogawa Spinning Disc Confocal

micro-lens array increase
the light
reaching the specimen

Typically 56% light passes through disc
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Yokogawa CSU-X1

Nipkow Disk

Sample
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Rotation
Direction
Nipkow Disk
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Spinning Disk Fundamentals

Light Beam
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Paul Nipkow, 1884
Eggar and Petran, 1967

Approx. 1000 pinholes

Single frame created with each
30-degree of rotation of disc
(12 frames per rotation)
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Paul Nipkow, 1884

Rotation
Direction

\__A Nipkow Disk Eggar and Petran, 1967
;0' Rotation
xx,' ._ j
Pinhole ' Archimedean Spiral

Approx. 1000 pinholes

Single frame created with each
30-degree of rotation of disc
(12 frames per rotation)
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The Nipkow Disk
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“Ae 30° Rotati
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~
B 4 ~
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Pinhole ‘ Archimedean Spiral

Larger pinholes - brighter image, but less “confocal”
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The Nipkow Disk

-~
-~
-~
-~
-~
“Ae 30° Rotati
" 4
/S
5 4 .
B 4 ~
~
Pinhole ‘ Archimedean Spiral

Larger pinholes - brighter image, but less “confocal”

Pinholes fixed size: Typically = 50um
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The Nipkow Disk

Pinhole ' Archimedean Spiral

Larger pinholes - brighter image, but less “confocal”

Pinholes fixed size: Typically = 50um

(optimised for biology)
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The Nipkow Disk

Pinhole ' Archimedean Spiral

Constant Battle:
Smaller spacing - more light gets through, but “crosstalk”

Pinhole Spacing Typically = 2.5um apart
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Yokogawa

Wednesday, 16 November 16



Yokogawa

Yokogawa Spinning Disk

Light Direction
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Yokogawa
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Cell division in brain stem cells (neuroblasts), Raff Lab
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Cell division in brain stem cells (neuroblasts), Raff Lab
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MT binding protein in Drosophila embryo, Raff Lab
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MT binding protein in Drosophila embryo, Raff Lab
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Speed
Sensitivity
Flexibility
Bleaching

Pretty Pictures

Point Scanning

Vs Spinning Disc

Point Scanning

Slow (secs)
OK

Good
Poor

Unbeatable!

Fast (msecs)

OK
Poor
Good

Pretty damn good!
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Point Scanning

Vs Spinning Disc

Point Scanning

Speed Slow (secs) Fast (msecs)
Sensitivity OK OK

Flexibility Good Poor

Bleaching Poor Good

Pretty Pictures Unbeatable! Pretty damn good!
Pretty Movies Good —if process slow Unbeatable!
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2-photon Microscope
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for imaging deeper into thick specimens

less damaging to biological samples
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1 Photon Excitation 2 Photon Excitation
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1 Photon Excitation

high energy state

lowest singlet excited state

10 ground state
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1 Photon Excitation
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2 Photon Excitation
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lowest singlet excited state
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2 Photon Excitation
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2 Photon Excitation

Almost simultaneous

high energy state

2" low energy

lowest singlet excited state
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Signal o« [ Signal o« [*
_Excited _Excited
=1 Vib. W =T Vib.
@
@ =¥ W ~ 20
@
_ground ground

Near simultaneous, two photon event highly unlikely, only really possible a focal point

Tightly focused excitation
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2-photon Microscope

Pulsed excitation laser is then scanned across the sample.

Longer wavelengths are scattered to a lesser degree
than shorter ones, and penetrate deeper into the
sample.

In addition, these lower-energy photons are less
likely to cause damage outside the focal volume.
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