

Radcliffe Department of Medicine

Optical Super-Resolution Microscopy

Christian Eggeling

MRC Human Immunology Unit & Wolfson Imaging Centre Oxford Weatherall Institute of Molecular Medicine University of Oxford

<u>Previously:</u> Max Planck Institute for biophysical Chemistry Dep. NanoBiophotonic (Prof. Hell) Göttingen, Germany

Super-Resolution Microscopy

The Nobel Prize in Chemistry 2014

Photo: Matt Staley/HHMI Eric Betzig Prize share: 1/3

Photo.Wikimedia Commons, CC-BY-SA-3.0 Stefan W. Hell Prize share: 1/3

Photo: K. Lowder via Wikimedia Commons, CC-BY-SA-3.0

William E. Moerner

Prize share: 1/3

Live Cell Microscopy Observation of living cells: Non-Invasive

Live Cell Far-Field Microscopy Fluorescence

Study specific molecular processes in the living cell:

Liver-Cells: Nucleus and Cell-skeleton

Excite fluorescence by laser light

Far-Field Fluorescence Microscopy *Confocal Setup*

- **Point detection**: scanning required to construct image
- Confinement along z (pinhole)

Liver-Cells: Nucleus and Cell-skeleton

- Large area illuminated
- **Camera detection**: image taken in one step
- No z-confinement

Far-Field Fluorescence Microscopy *Resolution: Goal*

Far-Field Fluorescence Microscopy *Resolution: Goal*

Far-Field Microscopy *Resolution Limit: Diffraction Barrier*

Far-Field Fluorescence Microscopy: Focussing of light

- away from surfaces – inside cells (3D)

Far-Field Microscopy *Resolution Limit: Diffraction Barrier*

Resolution of Optical Microscopy Resolving Close-By Objects

The smaller the spot, the sharper the image !

Far-Field Microscopy Surpassing the Resolution Limit: Turning ON/OFF

I_{STED} [GW/cm²]

STED Microscopy *Dynamical confinement of resolution*

Nanoscale observation areas: CONTINUOUS TUNING of spatial resolution!

633nm exc, 90ps, 30kW/cm² 785nm STED 200ps, 76MHz

STED Microscopy Cellular Imaging

differentiated);

SH-SY5Y (retinoic acid-BDNF-

establishes cross-links to organize and stabilize neurofilaments in axons

Confoca

+LD

Nanopatterns

synaptic proteins on endosomes of PC 12 cells (neuroendocrine activity; generate synaptic vesicles) Atto532-synaptophysin LD

Donnert et al, PNAS 2006

STED Microscopy *Cellular Imaging*

Synaptophysin (red, Atto647N) + syntaxin1 (green, Atto532) in neurons

Donnert et al BiophysLett 2006 / Meyer et al Small 2008

STED-Microscopy *Multi-Color Sub-Diffraction Imaging*

in neurons

Donnert et al BiophysLett 2006 / Meyer et al Small 2008

Schmidt et al NatMethods 2008 Clausen et al Nanobioimaging 2013

Harke / Ullal et al NanoLett 2008

Fluorescent 100nm Beads – multiple layers on cover glass

3D STED nanoscopy II – iso STED

Mitochondria in Vero cells: outer membrane protein Tom20 (NK51, red)

z = 0 nm

С

= +130 nm

Schmidt et al Nat Methods 2009 Ullal /Schmidt et al NanoLett 2009

Scale bar: 1µm

STED Microscopy *Inside Living Cells - Dynamics*

YFP-transgenic mouse Hippocampal slice CA1 neuron (PNAS Nägerl et al 2008) (BiophysJ 2011)

Live Mouse YFP (Science Berning et al 2012)

Live-Cell (inside) Multi-Color (more complex) Two-Photon excitation 3D possible Conventional dyes, GFP, ...

STED Live Cell Microscopy Proteins

Live-cell labeling of proteins with organic dyes – intracellular:

SNAP-/CLIP-/HALO-tag technology

Confocal

Confocal and STED imaging of Cep41 protein localization in living U2OS cells:

Cep41-SNAP bound to microtubules, scale bar 500 nm SNAP-Cep41 localized at the centrosome

Confocal

STED

Lukinavicius et al, Nat Chem 2013

Far-Field Nanoscopy *Alternative ON/OFF*

Optically Bistable Marker

Hell, Jakobs, Kastrup, Appl. Phys. B 77 (2003)

Far-Field Nanoscopy *ON/OFF - asFP595*

Fluorescent protein asFP595

sea anemone Anemonia sulcata, Lukyanov et al. (2000) J. Biol. Chem.

cis-trans photoisomerisation dark (trans)- bright (cis) Andresen et al. (2005) *PNAS*

ON/OFF at low CW powers nW - µW (~ kW/cm²) High saturation!

ON: 560nm OFF: 400-450nm (local intensity zero)

Sub-Diffraction Microscopy *with asFP595 – RESOLFT-Microscopy*

Effective observation spot

yellow (568 nm)

blue (458 nm)

Sub-diffraction

RESOLFT = *Re*versible Saturable Optical Fluorescence Transition

Hofmann et al, PNAS 2006

Far-Field Nanoscopy *ON/OFF - asFP595*

custom-prepared glass slides - parallel grooves

focused ion beam milling (Fraunhofer Institute IISB, Erlangen, Germany) 10 μ m long, 0.5–1 μ m deep, 100 nm wide, distance 500 nm images RL-deconvolved

Hofmann et al, PNAS 2006

Sub-Diffraction Microscopy *asFP595 - Limitations*

Incomplete zero - Depletion in central zero

Far-Field Nanoscopy *ON/OFF – limits + advances*

Switching fatigue - photobleaching

Dronpa \rightarrow **rsFastLime** Stiel et al, Biochem J 2007

 $GFP \rightarrow photoswitching (rsEGFP)$ Grotjohann et al, Nature 2011

Switch-off + Readout: 488nm Switch-on: 405nm

\Rightarrow improve ON/OFF cycling

- less cross-talk
- tetramer!!!
- more on/off cycles
- high brightness
- faster switching

Far-Field RESOLFT Nanoscopy *Reversibly Photoswitchable Fluorescent Proteins*

Excellent for Live-Cell (low light levels)

Multi-Color (new fluorescent proteins) 3D possible Photoswitchable proteins / dyes

Intensity $\approx 1 \text{ kW/cm}^2$

Citrine \rightarrow Dreiklang Brakemann et al, Nature Biotechnol. 2011

> Switch-on: 405 nm Switch-off: 355 nm Read-out: 488 nm

> > Keratin19-Dreiklang expressed in living PtK2 cells

Far-Field Nanoscopy *ON/OFF via Triplet/Dark States*

Turn-off fluorescence by pumping into a long-living dark (triplet) state

Low CW powers (µW – kW/cm²)

GSD-Microscopy Far-Field Nanoscopy using the triplet state

Phase Mask

Phase

+0

Phase

+λ/2

Phys. Rev. Lett. 98: 218103 (2006), Bretschneider et al.

Fluorescence Nanoscopy NV centers in diamond

Nitrogen vacancies (NV) centers in diamond

Ultrastable luminescence sources (Gruber et al. Science 1996)

Fluorescence Nanoscopy STED Imaging on single NV centers

STED on "isolated" NV centers

in diamond of type IIa grown by chemical vapour deposition (Jelezko, Wrachtrup (Stuttgart))

exc: 532nm - STED: 775nm 8MHz

E. Rittweger, K.Y. Han et al, Nature Photonics 2009

Fluorescence Nanoscopy STED imaging on single NV centers

E. Rittweger, K.Y. Han et al, Nature Photonics 2009

STED Microscopy *NV centers as labels for STED microscopy?*

30-35nm-sized nanodiamonds (by milling)

exc: 532nm - STED: 775nm 80MHz or CW

Functionalization for biological labeling!

Fluorescence Nanoscopy *GSD imaging by optical dark state shelving*

Fluorescence Nanoscopy *GSD imaging by optical dark state shelving*

Fluorescence Nanoscopy *GSD imaging on single NV centers*

Fluorescence Nanoscopy *GSD imaging on single NV centers*

E. Rittweger et al, EPL 2009

Fluorescence Nanoscopy Photoswitching is key

Same nanoscopy of NVs: via 3 different switching mechanisms

PHOTOSWITCHING is key to nanoscale!!!

STED

Confocal

GSD saturation

GSD dark state shelving

Far-Field Nanoscopy STED/RESOLFT vs. PALM/STORM/...

PALM/STORM ...

STED/RESOLFT vs. PALM/...

Same principle: ON/OFF

Similar techniques: Own advantages/disadvantages

Same labels / samples
- New control!

Confocal iii iii iii iv iv

STED/RESOLFT

Optimization of Fluorescence Signal STED

Simultaneous excitation with Excitation and STED light

Two effects:

 \Rightarrow Shortening of excited state lifetime \Rightarrow Reduction of photobleaching

 \Rightarrow Excited state absorption - photobleaching

Optimization of Fluorescence Signal STED – D-Rex

Simultaneous excitation with Excitation and STED light

 \Rightarrow Excited state absorption - photobleaching Dark State: D-Rex STED $\Delta \mathbf{T}$ Time $\Delta T < \tau_{\rm D}$ STED #1 **STED #2 Bleach 80 MHz** Dark Ш 1/∆T 0 max $\Delta T > \tau_n$ 250 kHz No Bleach Φ Dark н 1/∆T 80 MHz 80 MHz $\Delta \mathbf{T}$ Time

STED Microscopy Example

Syntaxin clusters

membrane sheets of PC12 cells immunolabelled for syntaxin for three different preparations directly fixed (left) patched 1/2 (right): clustering reinforced/density decreased scale bar: 500 nm

Syntaxin clusters

Syntaxin cluster morphology is independent of its expression level. membrane sheets generated from PC12 cells expressing different levels of immunolabeled myc syntaxin 1 scale bar: 500 nm

b

а

Lipid Plasma Membrane Organization Nanoscale

Lipid Plasma Membrane Organization Fluorescence Recordings: Lipids

Lipid Plasma Membrane Organization STED Nanoscopy Measurement

Homogeneous distribution

Lipid Plasma Membrane Organization STED Nanoscopy Measurement

Homogeneous distribution

Fast diffusion → **Limited temporal resolution!**

Lipid Plasma Membrane Dynamics STED Nanoscopy Measurement

Live Cell Nanoscopy STED-FCS

Live Cell Nanoscopy STED-FCS - Diffusion Models

Live Cell Nanoscopy STED-FCS - Diffusion Models

Live Cell Nanoscopy STED-FCS - Diffusion Models

STED-FCS

Lipid Membrane Diffusion + *Interactions: PE* + *SM*

→ Complex on molecular scale (proteins, lipid-shells, ...)

~10 ms, no movement during trapping

Cholesterol-assisted

(COase/B-Cyclo-Dextrin/Zaragozic acid...)

Binding partner bound to cytoskeleton (Latrunculin/Jasplakinolide/Nocodazole...)

Dependence on lipid structure – proteins as well (not label)

SM: trapping

Eggeling et al. Nature 2009 Mueller et al. Biophys J 2011

Lipid Plasma Membrane Dynamics STED Nanoscopy Measurement

Membrane Dynamics STED-FCS

Combining STED – mobility studies: Plasma-membrane interactions!

Far-Field RESOLFT Nanoscopy

Reversibly Photoswitchable Fluorescent Proteins

Thousand doughnuts (CCD detection)

Chmyrov et al, Nature Meth. 2013

Far-Field RESOLFT Nanoscopy

Reversibly Photoswitchable Fluorescent Proteins

SpringerOpen[®]

Optical UNIX Nanoscopy

www.optnano.com

OPEN FOR SUBMISSION NOW...

S. Polyakova

Acknowledgement

MPI, Göttingen <u>Lipid Experiments</u> Veronika Mueller Alf Honigmann Debora Machado Andrade Christian Ringemann Rebecca Medda Birka Lalkens Giuseppe Viccidomini Haisen Ta Andreas Schönle <u>Lipid labeling</u> Dr. V. Belov

Stefan Hell + whole group

Acknowledgement

Human Immunology Unit

\wedge \wedge	٨
3 mm	
Radcliffe Department of	Medicine

Team – HIU/WIMM:

Jorge Bernardino de la Serna (Biophysics – membrane) Mathias Clausen (Biophysics - membrane) Silvia Galiani (Physics – nanoscope setup/organelles) Marco Fritzsche (Physics - cytoskeleton) Erdinc Sezgin (Biophysics – membrane) Jakub Chojnacki (Biochemistry - virus) Huw Colin York (Physics – microscopy/force) Tess Sanley (Biology – receptor) Antonio Gregorio Dias (Biology – virus) Sumita Ganglui (Biology)

Wolfson Imaging Centre Oxford

Christoffer Lagerholm (manager) Veronica Buckle

WIMM

Vincenzo Cerundolo

Doug Higgs

Simon Davis David Jackson , Graham Ogg ...

Micron/Oxford

Ilan Davis, Lothar Schermelleh, ... Martin Booth, Achillefs Kapanidis, Philipp Kukura... Mike Dustin...

Labeling

Harry Anderson (Chem. Oxford) Del Besra (Birmingham)

Resolution of Optical Microscopy - Diffraction

Light rays bend around edges – new wavefronts are generated at sharp edges

Resolution of Optical Microscopy

Airy pattern formation by microscope objective

Resolution Limit Imposed by Wave Nature of Light
Focal Volume Confinement *Focal Engineering – Local Zero*

STED-Microscopy Setup

