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Fluorescence explained in the Bohr model

Absorption of light (blue) causes an electron to move to a higher energy orbit. After a
particular time in the excited state (fluorescence lifetime) the electron returns to its ground
state and the fluorophore dissipates the excess energy by emitting a photon (green).
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Jablonski-Diagram
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Stokes-Shift and Mirror-Rule
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* difference between excitation and emission maxima caused by a quick electron relaxation/
intramolecular vibrational energy loss (red-shifted)

* near-mirror image spectra: same electronic transitions are involved in both excitation and
emission



Overview of Fluorescence Characteristics

» advanced fluorescence techniques can be used to measure or molecular interactions
such as binding processes or conformational dynamics

* most important characteristics of fluorophores

* Quantum yield Q = # emitted photons /# absorbed photons

* Fluorescence lifetime T = 1/relaxation rates k

* Quenching: interactions between molecules lead to a reduction of the
quantum yield or the fluorescence lifetime (dynamic, static, self-quenching)

* Q depends on solvent polarization, pH, fluorophore concentration, oxygen

» fluorescence lifetime measurements are not influenced by internal settings of the
instrument like laser intensity or detector gain



Photobleaching

* photochemical process

 the fluorophore’s ability to enter repetitive excitation/emission cycles is permanently
interrupted by destruction or irreversible covalent modification of the fluorophore

 usually an unwanted effect, microscopy images need correction for photobleaching

* Photobleaching-based techniques for assessing cellular dynamics: FRAP, FLIP, FLAP

* LSMs are good for photobleaching techniques due to their high intensity laser light
sources and their flexible illumination control. They allow selective bleaching of
arbitrary regions within the filed of view and can then rapidly switch between bleaching

and imaging.



FRAP — Fluorescence Recovery after Photobleaching

 optical technique to quantify 2D lateral
diffusion of fluorophores, diffusion rates,
protein dynamics and interactions with
other cellular components

recovery occurs by replacement of
fluorophores in the bleached region by
lateral transport from the surrounding
surface

different recovery profiles classifying the
proteins’ mobility (highly, intermediate with
an immobile fraction, or immobile)
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FRAP: monomeric GFP can pass the nuclear membrane

Pre-bleach Bleaching ROI Post-bleach Fluorescence recovery

(A) Myoblast cell line is homogenously expressing GFP-Myosin Il
(B) Region of interest (ROI) is bleached
(C) Dark area: fluorophores were permanently damaged (no emission)

(D) Fluorescence in the photobleached region recovers



Inverse FRAP (iFRAP)

Pre-bleach Bleach 30 s

* initially developed to study the mobility
of molecules in small areas of the nucleus
and their exchange with the surrounding
nucleoplasm

* the entire population of fluorophores in
the cell is bleached, except the
accumulated fluorophores in a small part
of the organelle

2 min 3 min

* subsequently, the loss in fluorescence in
the accumulation is recorded over time




Potentiell Complications

* data modelling and processing, Operator errors

* living cells move during experiment (compensation via alignment algorithm)
 correction for overall loss of fluorescence

* 3D samples: bleached structure is far more complex than visible

* blinking or reversible photobleaching may cause flawed FRAP results

e photo-induced cross-linking may occur (free radical induced cross-linking
reactions) which may lead to different bleaching intensities



FLIP — Fluorescence Loss in Photobleaching

 related to FRAP, a small region is repeatedly bleached and the loss of fluorescence in
another region is measured.

e useful to show connectivity of compartments or for measuring turnover of
molecules between different compartments

repetitive bleaching in ROI (circle)
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FRET — FOrster Resonance Energy Transfer
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Overlap integral of the Cy3 emission spectrum and the excitation spectrum of Cy5. As a result
of FRET, the donor emission (D,,,) is reduced while the acceptor emission (A,,,,) increases.
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Fluorescent protein FRET pairs
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Fundamental cellular FRET-Approaches
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FLIM — Fluorescence Lifetime Imaging

e ...is an imaging technique for producing an
image based on the differences in the
exponential decay rate of fluorophores. 100

* the lifetime of the fluorophore signal, rather
than its intensity, is used to create the image
in FLIM. This has the advantage of minimizing
the effect of photon scattering in thick layers

of sample.
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FLIM Measurements

» essential components of a FLIM set-up: pulsed laser source, detector (APD or PMT),
dichroic mirror (to separate fluorescence and excitation), objective (to focus the excitation
light into the sample and collect fluorescence signal) and a TCSPC unit to measure the time
between excitation and fluorescence emission

* the delay times are sorted into a histogram that plots the occurrence of emission over
time after the excitation pulse

* line and frame marker signals from the scanner (confocal microscope) are additionally
recorded in order to sort the time stream of photons into the different pixels.

1.2c10° 1

30

1.0x10"4

o
¢
-
o

6.0x10*

&

Normalized counts
o

Frequency [counts]

~N 2
g R
—_ —
Q o

Average lifetime [ns]

001 4y AR AT Xt S L LY
0 5 10 15 20 25 30 25 40 40 SO 6 70 8 90 100

Lifetime [ns] Lifetime [ns]

o
o
"

600 nm




Combined FRET - FLIM

allows the measurement of lifetime
dynamics pixel-by-pixel

mapping of spatial distributions to
indirectly measure biomolecule
concentrations, interactions between
biomolecules, and conformational
changes with a much higher accuracy
than conventional FRET methods

FLIM-FRET + TPE = advantage of less
scattering, increased spatial
resolution and depth-sectioning

The shorter the linker the larger the
change in mean flurescence
lifetime/FRET-efficiency
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FCS — Fluorescence Correlation Spectroscopy

* FCS is used to get time-resolved information about an ensemble

with single molecule sensitivity in a small confocal volume oo™

* Widely used technique to obtain quantitative information such as

» diffusion coefficients
250nm
hydrodynamic radii k|

e average concentrations
kinetic chemical reaction rates
singlet-triplet dynamics

v

Volume = 101°]



FCS — Autocorrelation of Fluorecensce Fluctuations
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What causes fluctuations in intensity? a) Poison noise,
b) diffusion of molecules

Bursts of photons are seen as single
mmm) | fluorophores diffuse in and out of the
laser beam




FCS — Autocorrelation of Fluorecensce Fluctuations
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FCS — Autocorrelation of Fluorecensce Fluctuations
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FCS — Binding Kinetics
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FCS — Conformational Dynamics
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Figure 3. Normalized FCS curves measured for 10~° M solutions of the
RNA hairpin HP and the native ORN NT in the absence and presence of
AtGRPT7 protein. The fluorescence correlation functions of free HP and NT
are shown in black and green, respectively. The curve for HP bound to
AfGRP7 is shown in red and that for NT bound to AfGRP7 in blue. The
proposed model of a two-state hairpin-folding equilibrium whose unfolded
state can be bound by the protein®” is illustrated in the inset. 10°
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JACS., 2008, 130 (29)



ALEX — FCS

FCS with Alternating Laser Excitation
and FRET-pairs
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FCCS — Dual-Colour Extension of FCS

probes the interaction of two differently labeled
molecular species with higher precision than single-
color FCS

correlating the fluorescence signal of both two
spectrally distinct detection channels and with each
other (‘cross’-correlation)

high specificity: FCCS curve is only formed if the
differently labeled molecules are bound (co-
diffuse). Only then their fluorescence fluctuations
correlate in time

From amplitude and decay time: binding constants,
mobility of the bound complex, concentrations of
all of the species
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Summary

* Fluorescence Microscopy offers efficient and unique approaches to
study fixed and living cells.

* Fluorescence characteristics can be used to visualize and analyse
complex dynamics and molecular interactions in cells, organelles and
sub-cellular components.

 All techniques take advantage of particular aspects of the
fluorescence process (emission, excitation, damage, non-radiative
decays)

* They have different strengths and weaknesses.

* All of them require careful experiment design and data analysis.
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The End!



