STED & STED-FCS

Dr. B. Christoffer Lagerholm Facility Manager Wolfson Imaging Centre - Oxford Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital

christoffer.lagerholm@imm.ox.ac.uk

Live Cell Microscopy Observation of living cells: Non-Invasive

Far-Field Fluorescence Microscopy *Resolution: Goal*

Far-Field Fluorescence Microscopy *Resolution: Goal*

Live Cell Far-Field Microscopy Fluorescence

Camera-Based Far-Field Microscopy Wide-Field Setup

Liver-Cells: Nucleus and Cell-skeleton

- Large area illuminated
- Camera detection: image taken in one step

Far-Field Fluorescence Microscopy *Confocal Setup*

- required to construct image
- Confinement along z (pinhole)

Far-Field Microscopy *Resolution Limit: Diffraction Barrier*

Far-Field Fluorescence Microscopy: Focussing of light

- away from surfaces – inside cells (3D)

Far-Field Microscopy *Resolution Limit: Diffraction Barrier*

Far-Field Microscopy Surpassing the Resolution Limit: Turning ON/OFF

Far-Field Microscopy Surpassing the Resolution Limit: Turning ON/OFF

Far-Field Microscopy Surpassing the Resolution Limit: Turning ON/OFF

STED Microscopy *Dynamical confinement of resolution*

Nanoscale observation areas: CONTINUOUS TUNING of spatial resolution!

633nm exc, 90ps, 30kW/cm² 785nm STED 200ps, 76MHz

STED-Microscopy Setup

Focal Volume Confinement *Focal Engineering – Local Zero*

Harke / Ullal et al NanoLett 2008

Fluorescent 100nm Beads – multiple layers on cover glass

3D STED nanoscopy II – iso STED

Mitochondria in Vero cells: outer membrane protein Tom20 (NK51, red)

b

z = 0 nm

C

= +130 nm

Schmidt et al Nat Methods 2009 Ullal /Schmidt et al NanoLett 2009

Scale bar: 1µm

STED-Microscopy *Multi-Color Sub-Diffraction Imaging*

4 laser lines:

Synaptophysin (red, Atto647N) + syntaxin1 (green, Atto532) in neurons

Donnert et al BiophysLett 2006 / Meyer et al Small 2008

3 laser lines:

Large Stokes shift dye – only one excitation laser Mitochondria in Vero cells: outer membrane protein Tom20 (NK51, red) matrix protein Hsp70 (Dy-485XL, green)

Schmidt et al NatMethods 2008

Fluorescence Nanoscopy STED imaging on single NV centers

E. Rittweger, K.Y. Han et al, Nature Photonics 2009

Commercial Leica SP8 gSTED Microscope at WIMM

- The LEICA SP8 is a conventional inverted laser-scanning confocal microscope that is additionally equipped for super-resolution STED imaging (resolution_{x,y} \sim 50 nm)
- This system is equipped with continuous wave (CW) lasers (@ 405, 458, 488, and 514 nm), a tuneable pulsed white laser (470-670 nm), a pulsed laser at 440 nm, and a high power CW laser at 592 nm for STED imaging

Golgi (TGN46) Dye: Alexa488 with Eva Wegel/Ian Dobbie

Muscle myocytes/Titin Z-disk/Alexa488 with Katja Gemlich

A. Confocal _{Raw}

B. Gated STED (50% STED Power)

Raw

De-convolved (Huygens)

De-convolved (Huygens)

Centrosomes – with Alan Wainman/Jordan Raff - 130513

Line profiles fit were fit to Sums of Two Spatial Gaussians; FWHM= 2 (2 Ln[2])^{0.5} w)

Scale Bar = $1 \mu m$

AchR Clusters- with Judy Cossins / David Beeson - 230113

Confocal Images

STED Images

Two-color STED Imaging Example

Wavelength (nm)

α-Tubulin (Abberior Star 440SX) / Nucler Pores (Atto 488)

Confocal 440/502 nm

gSTED 50% (440/502 nm)

Commercial STED Microscope – Leica SP8X (soon 3X)

	592 GATED/CW	660 GATED/CW	775 PULSED
Strength	GFP/YFP	Multicolor	Most established spectral range
Colocalization studies	+	++	+
Photostability	+	++	++
Live cell	++	+	(+)

STED Live Cell Microscopy Problems

STED Microscopy *Cellular Imaging*

protein-heavy subunit of <u>neurofilaments</u> <u>in the human neuroblastoma</u> cell line SH-SY5Y (retinoic acid–BDNFdifferentiated); establishes cross-links to organize

and stabilize neurofilaments in axons

Donnert et al, PNAS 2006

STED-Microscopy *Inside Living Cells*

Living Cells:

Citrine, Endoplasmatic Reticulum (ER) Live PtK2 cells Hein, Willig, Hell PNAS 2008

STED Microscopy *Inside Living Cells - Dynamics*

YFP-transgenic mouse Hippocampal slice CA1 neuron (PNAS Nägerl et al 2008) (BiophysJ 2011)

Live Mouse YFP (Science Berning et al 2012)

Live-Cell (inside) Conventional dyes, GFP, ... Two-Photon excitation

STED can also be combined with Fluorescence Correlation Spectroscopy (STED-FCS)

Bacia, K; Kim, SA; Schwille, P. (2006) Fluorescence crosscorrelation spectroscopy in living cells. Nature Methods 3: 83 – 89.

Live Cell Nanoscopy STED-FCS

Lipid Plasma Membrane Dynamics Nanoscale

Lipid Plasma Membrane Dynamics *Interactions on the Nanoscale: Nanodomains*

Lipid rafts/nanodomains?

- (Transient) cholesterol/sphingolipid-enriched

Lipid Raft

- Dense molecular packing (ordered)
- Compartmentalize cellular processes

Glycosphingolipids

Cytoskeleton

- Membrane divided in compartments
- Proteins: fence/hindrance in diffusion path

MSK-anchored proteins

- Hopping diffusion

Phospholipid

Why?

Kusumi

Membrane skeleton (MSK)

Pike, J.Lipid Res., Keystone meeting 2006

Problem:

Cholestero

heterogeneous
+ highly dynamic
- small (<200 nm)

Missing temporal/spatial resolution → hardly any direct observation method → highly debated

Lipid Plasma Membrane Dynamics Fluorescence Recordings: Lipids

Lipid Plasma Membrane Dynamics Confocal Recordings

Lipid Plasma Membrane Dynamics Confocal Recordings

Confocal: Limited spatial resolution !!!

Occasion of the second second

Relative large confocal observation area: averages over details on nanoscale cannot distinguish normal diffusion from nanoscale hindered diffusion

 $\frac{\text{SM diffusion slightly prolonged but still normal}}{\tau_d \approx 20 \text{ ms (PE) / 30ms (SM)}}$ $(1/\alpha) \approx 1 \text{ (PE / SM)}$

Slower normal diffusion but no anomalous diffusion???

Lipid Plasma Membrane Dynamics STED Nanoscopy Measurement

STED Live Cell Spectroscopy *Single Lipid Dynamics - FCS*

STED-FCS

Lipid Membrane Diffusion + *Interactions: PE* + *SM*

→ Complex on molecular scale (proteins, lipid-shells, ...)

~10 ms, no movement during trapping

Cholesterol-assisted

(COase/ß-Cyclo-Dextrin/Zaragozic acid...)

Binding partner bound to cytoskeleton (Latrunculin/Jasplakinolide/Nocodazole...)

Slight dependence on endogenous SM level (Myriocin)

STED-FCS *Membrane Dynamic – Lipid Structure*

Interactions differ for different lipids!

(trapping strength, Coase+Latrunculin dependence)

But not on dye and label position!

Arp2/3 Is Critical for Lamellipodia and Response to Extracellular Matrix Cues but Is Dispensable for Chemotaxis

Congying Wu,^{1,4,7} Sreeja B. Asokan,^{1,4,7} Matthew E. Berginski,² Elizabeth M. Haynes,^{1,4} Norman E. Sharpless,^{3,4} Jack D. Griffith,^{4,5} Shawn M. Gomez,² and James E. Bear^{1,4,6,*} ¹Department of Cell and Developmental Biology ²Departments of Biomedical Engineering, Computer Science, and Pharmacology ³Department of Genetics ⁴Lineberger Comprehensive Cancer Center ⁵Department of Biochemistry ⁴Howard Hughes Medical Institute University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA ⁷These authors contributed equally to this work ^{*}Correspondence: jbear@email.unc.edu DOI 10.1016/j.cell.2011.12.034

Cell 148, 973-987, March 2, 2012 ©2012 Elsevier Inc. 973

Measuring Hop-Diffusion with STED-FCS

Measuring Hop-Diffusion with STED-FCS

Measuring Hop-Diffusion with STED-FCS

NRK cells а С e 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.7 Diff Coeff (µm2/s) Diff Coeff (µm²/s) Diff Coeff (µm2/s) 0.6 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 —t— Control (n=32, r=10) — Control (n=32, r=10) Latrunculin B (n=12, r=4) Control - lamellipodia (n=32, r=10) Blebbistatin (n=12, r=4) 0.1 0.1 0.1 CK666 (n=18, r=4) NRK cell body (n=16, r=6) Cholesterol Oxidase (n=10, r=3) 0 0 0 100 300 0 200 0 100 200 300 0 100 200 300 FWHM (nm) FWHM (nm) FWHM (nm) IA32 cells b d f 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.7 Diff Coeff (µm2/s) Diff Coeff (µm²/s) Diff Coeff (µm²/s) 0.6 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 Control (n=33, r=10) Control (n=33, r=10) Blebbistatin (n=11, r=3) —t— Control (n=33, r=10) Latrunculin B (n=12, r=5) 0.1 0.1 0.1 IA32 2xKD (n=37, r=11) Cholesterol Oxidase (n=15, r=4) CK666 (n=30, r=7) 0 0 0 100 200 300 300 0 0 100 200 100 200 300 0 FWHM (nm) FWHM (nm) FWHM (nm)

Agreement of SPT with Qdots and STED-FCS

Acknowledgement

MPI, Göttingen Stefan Hell + whole group

<u>Many Slides</u> Christian Eggeling

<u>Lipid Experiments</u>

Veronika Mueller Alf Honigmann Christian Ringemann Rebecca Medda Birka Lalkens Giuseppe Viccidomini Haisen Ta Andreas Schönle <u>Lipid labeling</u> Dr. V. Belov

S. Polyakova

<u>Lipid labeling</u>

Dr. G. Schwarzmann Prof. K. Sandhoff (Kekule-Inst. Bonn)

Hop diffusion

Christian Eggeling Debora Machado-Andrade Mathias Clausen

Fluorescence Correlation Spectroscopy FCS

Statistics in Time

Fluorescence Correlation Spectroscopy (FCS) data acquisition - calculation of correlation function data analysis – length and density of fluctuations

Fitting: anomalous sub-diffusion: $G(t_c) \sim 1/(1 + (t_c/\tau_d)^{\alpha})$ $\Rightarrow \underline{\text{transit time}} \tau_d (\sim \text{mass, obs. area}) = \text{decay time}$ $\sim d^2 / D$

 $\Rightarrow \underline{\text{anomaly 1/\alpha:}} \\ (1/\alpha) = 1: \text{ normal free diffusion} \\ (1/\alpha) > 1: \text{ anomalous diffusion (e.g. trapping)}$