

Lecture 19 – Applied Image Analysis

Graeme Ball

Applied Image Analysis, March 2013

Three Questions

1. Why should you be interested in image processing & analysis?

2. What are the key concepts & techniques?

3. How can you apply them most efficiently?

Applied Image Analysis, March 2013

1. Science requires data

Hypothesis testing requires data analysis & statistics

Cell author guidelines:-

"processing may be unavoidable in certain instances and is permitted provided that the final data accurately reflect that of the original"

"any alterations must be clearly stated in the figure legend and in the methods section"

"alterations must be applied to the entire image (e.g., brightness, contrast, color balance)"

"authors will be required to make the original unprocessed data available to the editors"

1. Images are data

8-bit image (0-255), 3 channels .. think "data", not "picture"

a digital image is:

- data: arrays of carefully calibrated intensity measurements
- metadata: data about the data, which is essential for interpretation

1. JPEGs are (much) less data

5D 16-bit data: 33 MB, 17 million pixels (0-65535) 134 KB per 2D plane

8-bit JPEG (0-255 per channel)

3 KB per 2D plane

Applied Image Analysis, March 2013

1. JPEGs are (much) less data

5D 16-bit data: 33 MB, 17 million pixels (0-65535) 134 KB per 2D plane

8-bit JPEG (0-255 per channel)

3 KB per 2D plane

Applied Image Analysis, March 2013

What am I trying to measure?

What am I trying to measure?

Expression level?

accurate, calibrated intensities

What am I trying to measure?

Expression level?

accurate, calibrated intensities

Distance or colocalization?

contrast-to-noise, resolution, alignment

What am I trying to measure?

Expression level?

 $\longrightarrow \rangle$

accurate, calibrated intensities

Distance or colocalization?

contrast-to-noise, resolution,

alignment

Dynamics?

temporal resolution, photostability

What am I trying to measure?

Expression level?

accurate, calibrated intensities

Distance or colocalization?

contrast-to-noise, resolution, alignment

Dynamics?

temporal resolution, photostability

decide on the instrument (& technique)

What am I trying to measure?

Expression level?

accurate, calibrated intensities

Distance or colocalization?

contrast-to-noise, resolution,

alignment

Dynamics?

temporal resolution, photostability

decide on the instrument (& technique)

choice of fluorophores

2. Image Processing & Analysis

Image processing

Image restoration - correction, denoising, deblurring

Filtering to enhance features of interest

Segmentation - dividing an image into useful categories (e.g. feature, background)

Image analysis

Identifying and tracking features

Summary statistics: intensity/amount, distribution, speed, colocalization

Applied Image Analysis, March 2013

2. Image Restoration

Image restoration aims to recover the true image

Flat-field correction - uneven illumination (also, pseudo-correction)

Denoising / noise filtering - smoothing, neighborhood filters, non-local

Deblurring – deconvolution with or without PSF, unsharp mask

Image registration - rigid/affine versus elastic - intensity-based or feature-based

Normalization - intensity of each time-point scaled to correct bleaching (& flicker)

Applied Image Analysis, March 2013

2. Image Filtering

Image filtering enhances some features / rejects others

Spatial filters for smoothing & sharpening

Frequency domain filters enhance/suppress features based on size

Histogram operations, e.g. histogram equalization for contrast enhancement

Adaptive filtering equivalent to global filtering after normalization

Time-domain filtering - see temporal median filter in the tracking example

Applied Image Analysis, March 2013

pseudo-flat field

Im = Im-mean * Im/mean-filtered

original

240x240 mean-filt

FFT reveals frequencies

original

3x3 median

3-25 bandpass

registration can be critical!

pseudo-corrected

pseudo-flat field

Im = Im-mean * Im/mean-filtered

original

240x240 mean-filt

FFT reveals frequencies

original

3x3 median

3-25 bandpass

registration can be critical!

Applied Image Analysis, March 2013

pseudo-corrected

pseudo-flat field

Im = Im-mean * Im/mean-filtered

original

240x240 mean-filt

FFT reveals frequencies

original

3x3 median

3-25 bandpass

registration can be critical!

Applied Image Analysis, March 2013

pseudo-corrected

pseudo-flat field

Im = Im-mean * Im/mean-filtered

original

240x240 mean-filt

FFT reveals frequencies

original

3x3 median

3-25 bandpass

registration can be critical!

Applied Image Analysis, March 2013

pseudo-corrected

Patch-based denoising: 10-100 x less light?

8 ms exposure, 10% 488 Laser power

8 ms exposure, 0.1% 488 Laser power

Macrophage: Jupiter-GFP 7Z, 3stacks/s (Richard Parton)

Jerome Boulanger: SAFIR Denoising software

Integrated into Priism by the John Sedat Group UCSF

J. Boulanger, C. Kervrann, and P. Bouthemy, "Space-time adaptation for patch-based image sequence restoration," *IEEE Trans. on Pattern Analysis and Machine Intelligence*, vol. 29, no. 6, pp. 1096ñ1102, June 2007

Patch-based denoising: 10-100 x less light?

8 ms exposure, 10% 488 Laser power

8 ms exposure, 0.1% 488 Laser power

Macrophage: Jupiter-GFP 7Z, 3stacks/s (Richard Parton)

Jerome Boulanger: SAFIR Denoising software

Integrated into Priism by the John Sedat Group UCSF

J. Boulanger, C. Kervrann, and P. Bouthemy, "Space-time adaptation for patch-based image sequence restoration," *IEEE Trans. on Pattern Analysis and Machine Intelligence*, vol. 29, no. 6, pp. 1096ñ1102, June 2007

Patch-based denoising: 10-100 x less light?

8 ms exposure, 10% 488 Laser power

8 ms exposure, 0.1% 488 Laser power

Macrophage: Jupiter-GFP 7Z, 3stacks/s (Richard Parton)

Jerome Boulanger: SAFIR Denoising software

Integrated into Priism by the John Sedat Group UCSF

J. Boulanger, C. Kervrann, and P. Bouthemy, "Space-time adaptation for patch-based image sequence restoration," *IEEE Trans. on Pattern Analysis and Machine Intelligence*, vol. 29, no. 6, pp. 1096ñ1102, June 2007

CLAHE

Contrast Limited Adaptive Histogram Equalization

CLAHE

Contrast Limited Adaptive Histogram Equalization

2. Image Segmentation

Segmentation separates an image into subregions

2 common representations: "binary mask" images, and Regions Of Interest (ROIs)

Simple intensity thresholding - several methods (e.g. Otsu) to estimate threshold

Spot/particle detection - intensity, size and shape

Edge detection (e.g. Sobel) & Morphological image processing* (erosion, dilation)

Watershed calculation, Voronoi diagram, Ultimate eroded points

Machine learning and Manual options

Applied Image Analysis, March 2013

2. Binary masks & operations

Binary images usually created using a intensity threshold

ImageJ binary images are 8-bit gray, 255 and 0 (instead of 1 and 0)

Binary operations: erode, dilate, skeletonize, watershed, Voronoi

Applied Image Analysis, March 2013

Edge detection

"Find edges" is a Sobel operator: detects high gradient at edges

-1	0	+1
-2	0	+2
-1	0	+1

Gx

+1	+2	+1
0	0	0
-1	-2	-1

Gy

clown.jpg
320x200 pixels; 8-bit; 62K

Selections & measurements

- various selection tools: points, lines, enclosed regions, wand tool
- measure distances & angles
- add selection to ROI manager "t"
- Measure command (& Set Measurements)

2. Fiji/ImageJ tips

- useful tools that are easy to miss: the wand, ROI manager, brush selection
- understand how to manipulate stacks, hyperstacks and virtual stacks –
 e.g. how to convert, project, reduce, combine; channels tool
- make use of image histogram, "plot profile" and threshold tool
- learn how to "set measurements" and measure
- read the manual: http://rsbweb.nih.gov/ij/docs/user-guide.pdf

3. Free tools available

ImageJ / Fiji - versatile 2D+ image analysis tool with many plugins

Icy, Vaa3D, BioimageXD - 3D image visualization & analysis

KNIME – data analysis workflow for large datasets / batch

CellProfiler – quantitatively measure cell phenotypes in large datasets (+ Worm Toolbox)

Priism/IVE, Priithon & Editor – 2D image processing/analysis (DV/OMX)

OMERO - image repository & visualization

Applied Image Analysis, March 2013

3. Commercial Analysis Tools

Imaris, Amira - 3D visualization & analysis packages

Volocity - 3D visualization & analysis package, spinning disk

SoftWoRx - API Deltavision, deconvolution, SI reconstruction

Metamorph - microscope control, image processing/analysis

Huygens, AutoQuant - Deconvolution software

3. 3D visualization & analysis

- ImageJ/Fiji has 3D visualization & analysis fucntionality:
 3D viewer, Volume Viewer, Image 5D, hyperstacks, orthogonal view,
 3D objects counter
- Imaris, Amira and Volocity are 3D image visualization & analysis packages designed for microscopy (and medical imaging)
- Choice between viewing fluorescence intensity (often MIP) versus generating surface representations of objects

Applied Image Analysis, March 2013

3. Imaris movie

Image of bacterial septa (GFP) and DNA (DAPI), Christian Lesterlin

Applied Image Analysis, March 2013

3. Volocity

Advanced Bioimaging

View the Measurements tab. The Measurements View contains all the tools and information needed for selecting objects.

Measurements are shown here as a table or histogram

http://www.perkinelmer.com/PDFs/downloads/CreatingMeasurementProtocolVolocitySoftware.pdf

Applied Image Analysis, March 2013

3. Measuring Colocalization

Read Bolte & Cordelieres' 2006 review :-

http://www.ncbi.nlm.nih.gov/pubmed/17210054

- prerequisites: make very certain that:-
 - 1. you do not have bleed-through! (or crosstalk)
 - 2. your channel alignment is properly calibrated
 - 3. your images are as noise-free and deblurred as possible
- many colocalization statistics rely on segmenting both channels
 - => flat field & meticulous background correction
- use ROIs or masks to analyze different compartments separately
- 2 fundamental approaches:
 - 1. <u>intensity correlation</u> scatter plot, Pearson's (PCC)
 - 1b. Manders coefficients (M1, M2)
 - 2. **object-based analysis** (distances)

Applied Image Analysis, March 2013

3. Scatter plots and ICC

Scatter plot of channel intensities reveals presence/absence of colocalization:-

Fig. 5E (Bolte & Cordelieres)

- Pearson's Correlation Coefficient (PCC) of 0.5–1
 indicates colocalization
- large difference between M1 and M2 indicates more of one label – NB. if one label is everywhere, colocalization is meaningless!
- unlike PCC, negative values of Li's ICQ indicate mutual exclusion (0 means uncorrelated, 0.5 means colocalization)

Fiji & ImageJ have Coloc_2 and JACoP plugins (JACoP has object-based method)

3. Scripts & statistics

Measurement, automation & statistics

Quantitative results: care, consistency, avoid systematic errors, avoid bias*

Manual analysis vs. Macros vs. customized software tools for automation

In addition to Excel, other useful statistics software: R, MATLAB

* recommend blind analysis to avoid bias

3. ImageJ Macros save time

- first, try out some processing/analysis options manually
- turn on the recorder ... "Plugins > Macros > Record"
- you will see a command equivalent to every task you carry out
- paste a sequence of commands into new Macro (Plugins > New > Macro)
- for a description of how Macros work and info about in-built functions, see –
 http://rsbweb.nih.gov/ij/developer/macro/macros.html
 http://rsbweb.nih.gov/ij/developer/macro/functions.html
- result: gbSumMaskedSignal.ijm; for NMJ screen, James Halstead (Davis Lab)

Applied Image Analysis, March 2013

3. KNIME for data mining

Advanced Bioimaging

Applied Image Analysis, March 2013

3. MATLAB for image processing

- MATLAB is not free, but many academic institutions have licenses
- Much quicker and easier to prototype new algorithms in MATLAB than e.g. java or C++
- MATLAB is interactive, can use Bioformats to open images, and has an extremely powerful image processing toolbox
- MIJ for ImageJ integration, plus DIPimage image processing library (Delft)

Applied Image Analysis, March 2013

3. Tracking in MATLAB

Custom particle tracker

Based on Single Particle Tracker from the MOSAIC group (ETH Zurich),
 which is available as ImageJ plugin and MATLAB code

I. F. Sbalzarini and P. Koumoutsakos. Feature Point Tracking and Trajectory Analysis for

Video Imaging in Cell Biology, Journal of Structural Biology 151(2):182-195, 2005.

- Used MATLAB to build up a custom processing and detection scheme
- See: http://www.ncbi.nlm.nih.gov/pubmed/21746854

3. Tracking in General

Tracking

Most common scheme: process, detect/refine, link, correct

Reliable automatic detection is usually the hard part

Two essential prerequisites:-

- 1. contrast-to-noise ratio of >4
- 2. displacement per. frame less than inter-particle distance

1. Image restoration / filtering

example of a custom intensity transform: scale according to local median

raw data showing uneven illumination

'normalized' image

Image segmentation: thresholding

- a global threshold only works if the image is very

=> 'adaptive thresholding', or prior normalization

Image segmentation: identifying 'foreground' features

- easy to implement custom filters in MATLAB, like this temporal median filter to identify moving foreground

Image segmentation: identifying 'foreground' features

200x200 area, normalized

200x200 area, non-background ('foreground')

Image segmentation: identifying 'foreground' features

200x200 area, normalized

200x200 area, non-background ('foreground')

Object recognition

- many tools for point, line & edge detection in MATLAB
- generally work by either:
 - applying a mask to find maxima or
 - calculating intensity gradient (steep gradient = edge)

e.g. detection of Haar-like features to find particles

Object recognition

- many tools for point, line & edge detection in MATLAB
- generally work by either:
 - applying a mask to find maxima or
 - calculating intensity gradient (steep gradient = edge)

e.g. detection of Haar-like features to find particles

square Haar-like feature

Object recognition

- many tools for point, line & edge detection in MATLAB
- generally work by either:
 - applying a mask to find maxima or
 - calculating intensity gradient (steep gradient = edge)

e.g. detection of Haar-like features to find particles

square Haar-like feature

Object recognition

- many tools for point, line & edge detection in MATLAB
- generally work by either:
 - applying a mask to find maxima or
 - calculating intensity gradient (steep gradient = edge)

e.g. detection of Haar-like features to find particles

square Haar-like feature

2.4. Tracking in MATLAB

Custom particle tracker

final "particle image" with tracks

MOSAIC imageJ tracker results

Applied Image Analysis, March 2013

Summary

- importance of quantitative image analysis
- importance of experimental design the right data and trade-offs
- overview of processing / analysis concepts
- survey of available software choosing the right tool (default to Fiji/ImageJ)
- automation: is it necessary? if so, don't be afraid to try / ask for help
- keep data secure, well-organized and annotated
- feedback problems you are interested in that I haven't covered
- Demo tomorrow please ask questions

3. Summary (7 slides)

Overview of image processing & analysis

- importance of experimental design & optimization (identify problems early)
- summary of software / choosing the right tool for the job
- processing / analysis tips
- automation: is it necessary? if so, ask / don't be afraid to try
- keep data secure, well-organized and annotated
- feedback problems you are interested in that I haven't covered
- Demo