Confocal Microscopy

Jordan Raff The Dunn School of Pathology jordan.raff@path.ox.ac.uk

Outline of Talk

1. Confocal microscopy - some history

- 2. Laser Scanning Confocal Microscopy (LSCM)
- 3. Spinning Disk Confocal Microscopy
- 4. Widefield vs. LSCM vs. Spinning Disc Murray et al., Evaluating performance in 3D fluorescence microscopy. J. Microscopy (2007)

The principle of the confocal microscope

Comparison of Confocal and Widefield Microscopy

Confocal and Widefield Fluorescence Microscopy

Confocal "concept" patented by Marvin Minsky in 1957.

Confocal "concept" patented by Marvin Minsky in 1957.

Eggar and Petran developed "spinning disc" confocal in late 1960s.

Confocal "concept" patented by Marvin Minsky in 1957.

Eggar and Petran developed "spinning disc" confocal in late 1960s.

Brakenhoff, Stelzer developed "stage" scanning confocal in late 1970s.

Confocal "concept" patented by Marvin Minsky in 1957.

Eggar and Petran developed "spinning disc" confocal in late 1960s.

Brakenhoff, Stelzer developed "stage" scanning confocal in late 1970s.

White, Amos and Wilson developed MRC 500 point scanning confocal - marketed commercially in 1987. Amos and White, Biol. Cell 2003

Simplified View of a "Point-Scanning" Confocal

Simplified View of a "Point-Scanning" Confocal

The Galvanometer/Mirror Scanning System

http://www.olympusmicro.com/primer/java/galvanometerscanning/index.html

Simplified View of a "Point-Scanning" Confocal

Simplified View of a "Point-Scanning" Confocal

http://www.olympusmicro.com/primer/java/channelpmt/index.html

Very Low Noise (even without too much cooling) Very Rapid Response Huge Potential for Signal Amplification (~1X10⁷)

http://www.olympusmicro.com/primer/java/channelpmt/index.html

http://www.olympusmicro.com/primer/java/channelpmt/index.html

Low Quantum Efficiency (QE) (~15-40%) GaAsP!

http://www.olympusmicro.com/primer/java/channelpmt/index.html

Adjusting Offset and Gain of the PMT

Gain and Offset Adjustment in Confocal Microscopy

http://www.olympusmicro.com/primer/java/confocalsimulator/index.html

Adjusting Offset and Gain of the PMT

Gain and Offset Adjustment in Confocal Microscopy

Beware - this is how your image will be saved!

http://www.olympusmicro.com/primer/java/confocalsimulator/index.html

Fluorophore Emission Bleed-Through in Confocal Microscopy

http://www.olympusmicro.com/primer/java/confocalsimulator/index.html

Fluorophore Emission Bleed-Through in Confocal Microscopy

http://www.olympusmicro.com/primer/java/confocalsimulator/index.html

Fluorophore Emission Bleed-Through in Confocal Microscopy

Sequential scanning

http://www.olympusmicro.com/primer/java/confocalsimulator/index.html

Fluorophore Emission Bleed-Through in Confocal Microscopy

Sequential scanning - but a problem for live cells

http://www.olympusmicro.com/primer/java/confocalsimulator/index.html

Minimising "Bleedthrough"

Spectral Unmixing

http://zeiss-campus.magnet.fsu.edu/tutorials/spectralimaging/linearunmixing/index.html

Spectral Unmixing

Spectral Imaging and Linear Unmixing of Fixed Cells with Synthetic Dyes

Acousto Optic Tunable Filter (AOTF)

http://www.olympusmicro.com/primer/java/filters/aotf/index.html

Multiphoton Confocal Microscopy

http://www.olympusmicro.com/primer/java/multiphoton/jablonski/index.html

Spinning Disk Confocal Microscopy

The Nipkow Disk Paul Nipkow, 1884 Eggar and Petran, 1967

Spinning Disk Confocal Microscopy

Constant Battle:

Larger pinholes - brighter image, but less "confocal" Smaller spacing - more light gets through, but "crosstalk"

http://zeiss-campus.magnet.fsu.edu/tutorials/spinningdisk/microlensoptimization/index.html

The Yokogawa Spinning Disk

http://zeiss-campus.magnet.fsu.edu/tutorials/spinningdisk/yokogawa/index.html

The Yokogawa Spinning Disk

The Yokogawa CSU-X1 Spinning Disk

The Yokogawa CSU-X1 Spinning Disk

Can collect 2000 images per second

http://www.olympusmicro.com/primer/java/digitalimaging/ccd/interline/index.html

Can get very high QE - up to 95% Can be very fast

http://www.olympusmicro.com/primer/java/digitalimaging/ccd/interline/index.html

Noise!

Noise!

Dark Noise - less of a problem at low temperature

Noise!

Dark Noise - less of a problem at low temperature Read Noise - inherent to camera, but worse at high speed

Noise!

Dark Noise - less of a problem at low temperature Read Noise - inherent to camera, but worse at high speed Shot Noise - due to stochastic nature of fluorescence

Beware!!

How quantitative is an EMCCD Camera?

Understanding Zoom!

Speed

Slow (secs)

Fast (100msec)

SpeedSlow (secs)Fast (100msec)SensitivityOKOK

Speed	Slow (secs)	Fast (100msec)
Sensitivity	OK	OK
Flexibility	Good	Poor

Speed	Slow (secs)	Fast (100msec)
Sensitivity	OK	OK
Flexibility	Good	Poor
Bleaching	Poor	Good

Speed	Slow (secs)	Fast (100msec)
Sensitivity	OK	OK
Flexibility	Good	Poor
Bleaching	Poor	Good
Pretty Pictures	Unbeatable!	Pretty damn good!

Speed	Slow (secs)	Fast (100msec)
Sensitivity	OK	OK
Flexibility	Good	Poor
Bleaching	Poor	Good
Pretty Pictures	Unbeatable!	Pretty damn good!
Pretty Movies	Good if process slow	Unbeatable!

Speed	Slow (secs)	Fast (100msec)
Sensitivity	OK	OK
Flexibility	Good	Poor
Bleaching	Poor	Good
Pretty Pictures	Unbeatable!	Pretty damn good!
Pretty Movies	Good if process slow	Unbeatable!
Murray fluoresce	et al., Evaluating performatence microscopy. J. Microsc	nce in 3D copy (2007)

Example of fast imaging - single plane

Example of fast imaging - single plane

Example of FRAP on Spinning Disk

Example of FRAP on Spinning Disk

Centrioles Cnn

Example of FRAP on Spinning Disk

Another example of FRAP on Spinning Disk

Another example of FRAP on Spinning Disk

Another example of FRAP on Spinning Disk

Cell division in brain stem cells (neuroblasts)

Microtubules

Cell division in brain stem cells (neuroblasts)

Microtubules

Cell division in brain stem cells (neuroblasts)

Microtubules

Identifying proteins required for centrosome duplication

Centrosomes Centrosomal Antibody
Identifying proteins required for centrosome duplication

