Advanced Microscopy Course 2011 Introductory Lecture

Richard Parton - <u>Richard.Parton@bioch.ox.ac.uk</u> Department of Biochemistry University of Oxford

Program 2011:

Day 1: Mon 14 March - Fundamental Principles of Microscopy

1	Richard	10.15-11.15	General introduction to light microscopy	
2	lan	11.15-12.30	Principles of microscopy and microscope anatomy	
3	lan	1.30-2.30	Contrast enhancement (phase contrast and DIC)	
4	llan	2.30-3.30	Basic Fluorescence Microscopy	
5	Richard	4.00-5.00	Basic image analysis	

Day 2: Tues 15 March - Imaging Molecules in Cells

6	Mark	9.00-10.00 Fluorescent dyes and proteins		
7	Richard	10.00-11.00	Live cell imaging	
8	Jordan	11.20-12.20	Confocal, spinning discs and Multiphotons	
9	llan	1.30-2.30	Advanced widefield microscopy design (and OMX)	
10	lan	2.30-3.30	Detectors for microscopy	
11	lan	4.00-5.00	F* techniques: FRET, FLIM, FCS, FRAP, FLIP	

Day 3: Wed 16 March - New and emerging Imaging Approaches

12	Mark	9.00-10.00	Single molecule techniques	
13	llan	10.00-11.00	Breaking the limits: OMX, STED, SPIM, PALM	
14	lan	11.30-12.30	Building bespoke microscopes; image storage	
15	Graeme	1.30-2.30	Applied Image analysis and Matlab	
ALL		2.30-3.30	Micron and the self-taught practical exercises	
ALL		4.00-5.00 Q	uestions and Discussion	
	6.00	Drinks &	nibbles and informal discussions	

Goals of the lecture course

- •The basic physics of optics and microscopes
- •Explanation of how the light microscope works
- Make you aware of what is really important to good microscopy
 Explain of how to get the best from your microscope:

- Specimen preparation and histochemica stains
- Contrast enhancement, phase and DIC
- Fluorescence for detecting specific molecules
- Digital acquisition and deblurring images

Why do we need to understand microscopy?

• If you understand the principles involved then it is easy to understand how to get the best from your microscope.

 Microscopes work purely to the laws of optical physics - there is no witchcraft!

 All the buttons and levers and knobs actually serve a purpose don't mess with them if you don't understand!

Understanding what goes on in the Microscope

What can you do with a microscope?

100 years ago:

Magnify small things to visualise more details.

Now:

Image specific molecules inside cells.

Follow changes in the distribution of molecules or the morphology of cells over time.

Determine how close molecules are to each other within cells

Useful size range for light microscopy

We use the light microscope to image structures and substructures within this range: from about 300 µm down to about 0.3 µm (300 nm)

Eukaryote = 10 um 50 um

Bacterium = 1 um

Single GFP = 5 nm

Fluorescein = 1 nm

(1 nm = 10 Angstom)

What is important in microscopy?

- 1. Resolution
- 2. Sampling
- 3. Contrast
- 4. Noise

Magnification is nothing without resolution!

Krebs Tower, Department of Biochemistry, Oxford Google Earth, from 1000km

Image © 2008 TerraMe Image © 2008 GeoCor 2008 Cnes/Spot Im Streaming IIIIIIIII00

Image N

Eye alt 1000.29 km

Pointer 51"15'04.18" N 0'49'36.39" W

Krebs Tower, Department of Biochemistry, Oxford Google Earth, from 10km

Oxford

Image © 2008 The GeoInformation Group

2008 Infoterra Ltd & Bluesky

Streaming ||||||||100%

Pointer 51 45'05.93" N 1 15'19.04" W

Eye alt 9.96 km

Google

Krebs Tower, Department of Biochemistry, Oxford Google Earth, from 1km

Pointer 51°45'30.87" N 1/15'14.25" W Streaming 11/11/100% Eve alt 1.01 km //

Krebs Tower, Department of Biochemistry, Oxford Google Earth, from 100m

Pointer 51:45:33.67" N 1'15'15.13" W

© 2008 Infotens Utd & Bluesk

Streaming ||||100%

GoogleTH Eyelalt 100 m

Krebs Tower, Department of Biochemistry, Oxford Google Earth, from 50m

2008 Infoternalitd & Blueski

Pointer 51 45'34.09" N 1 15'14.32" W

Streaming |||||||100%

Eye alt 51 m

•==-Goog

Krebs Tower, Department of Biochemistry, Oxford Google Earth, from 10m

Google

Pointer 51'45'34.22" N 1'15'14.30" W

© 2003 Infotorra Ltd & Elusaby

Stronming ||||||||||200%

Eys alt 10 m

RESOLUTION

Normal resolution

High resolution

Dobbie et al Live Cell Imaging 2nd Edition. Chapter 10. Cold Spring Harbour Press

Resolution is nothing without contrast!

Contrast Enhancement: *LECTURE 3* Phase Contrast and DIC

Normal contrast

Phase contrast

DIC

Contrast Enhancement: *LECTURE 4, 6* Fluorescence

Understanding what limits Resolution

Convolution and the Point Spread Function

"convolution" by the microscope optics = the PSF

Lateral Resolution: The Rayleigh Criterion

D = the distance between the two closest points that can still be distinguished

 $D=1.22 \lambda/(NA_{obj}+NA_{cond})$

Epi-Fluorescence: $NA_{cond} = Na_{obj}$

Convolved by microscope

Just resolved

Not resolved Airy patterns must Overlap by less Than 42% of the Maximal intensities

Limit of resolution $\approx \lambda_{em}/2$

Axial Resolution:

Resolution is worse in the axial dimension (along the optical axis, Z)

$$D_{z} = 2 \lambda \eta / (NA_{obj})^{2} \dots 705$$

 $(\eta = refractive index of the object medium)$

Than it is in the lateral dimension (XY)

The relationship between the two is:

$$D_Z/Dxy = 3.28\eta/NA_{obj} \dots \approx 3$$

Resolution: Protein - Protein interaction

resolution $\approx \lambda_{em}/2$ (Z resolution ≈ 2.5 times worse)

XY resolution ~ 200 nm Z resolution ~ 500 nm

GFP is $\sim 5 x5 x5 nm$

- The solution F* techniques
- FRAP
- FRET Super-resolution techniques
- FLIM *LECTURE 11*

etc

***LECTURE** 13*

Contrast and "out of focus" information

"out of focus" information

Techniques for improved fluorescence imaging

Fluorescence deconvolution

Wide-field vs Deconvolution

The PSF and "out of focus" information

Convolution and deconvolution

Confocal microscopy

The confocal principle and optical sectioning

Point scanner and spinning disc

Total Internal Reflection Microscopy *LECTURE 11-14*

Evanescent wave excitation

LECTURE 5-8

Wide field PSF

Confocal PSF

Resolution / Sampling / Noise

Resolution and noise (S/N ratio)

Noise limits the contrast which limits the details that can be resolved = Noise limits resolution *LECTURE 5*

Resolution and Sampling

LECTURE 5,9

Appropriate Sampling According to Nyquist theorem - at least half the size (D/2.3)

Image Processing

Computational enhancement / automation

Raw - Widefield

Processed

LECTURE 5, 15

(Richard Parton; Graeme Ball)

Live imaging - not just a pretty picture

(Richard Parton, Graeme Ball)

D

Microscopy is fundamentally important to modern biology

Milestones in Microscopy

http://www.nature.com/milestones/milelight/index.html

1595	Invention of the microscope (Milestone 1)	1980	Calcium probes (Milestone 12)
1858	First histological stain (Milestone 2)	1981	Video-enhanced differential interference contrast (Milestone 8)
1871	Synthesis of fluorescein (Milestone 2)	-	TIRF microscopy (Milestone 13)
1873	Diffraction limit theory (Milestone 3)	1983	Deconvolution microscopy (Milestone 14)
1911	First fluorescence microscope (Milestone 4)	1987	Realization of confocal microscopy (Milestone 9)
1929	First epifluorescence microscope (Milestone 4)	1990	Two-photon microscopy (Milestone 15)
1935	Phase contrast microscopy (Milestone 5)	1993	Light sheet microscopy (Milestone 16)
1939	Polarization microscopy (Milestone 6)	-	Single molecule microscopy (Milestone 17)
1942	Immunofluorescence (Milestone 7)	1994	GFP (Milestone 18)
1955	Differential interference contrast (Milestone 8)	1997	Fluorescent protein-based biosensors (Milestone 19)
1961	Concept of confocal microscopy (Milestone 9)	1999	Red fluorescent proteins (Milestone 20)
1967	The dichroic mirror (Milestone 4)	2000	Breaking the diffraction limit: STED (Milestone 21)
1972	Fluorescence correlation spectroscopy (Milestone 10)	2002	Photoactivatable fluorescent proteins (Milestone 20)
1976	FRAP (Milestone 10)	2006	Breaking the diffraction limit: PALM/STORM (Milestone 21)
	FRET (Milestone 11)		

The Nobel Prize in Chemistry 2008

"for the discovery and development of Green Fluorescent Protein"

Shimomura

Bioluminescence, Aquorin and Green fluorescent protein

1962

Chalfie

Expression of Green fluorescent protein in other organisms 1994

Tsien

Manipulating the colour of GFP 1999

http://www.nature.com/milestones/milelight/full/milelight18.html

http://nobelprize.org/nobel_prizes/chemistry/laureates/2008/

Super-resolution: beyond the diffraction limit

CONVENTIONAL

XY resolution ~250 nm

3D SIM

XY resolution ~130 nm

Dobbie et al Live Cell Imaging 2nd Edition. Chapter 10. Cold Spring Harbour Press

LECTURE 13

Reference Material

http://www.olympusmicro.com/ Very comprehensive and well written

http://micro.magnet.fsu.edu/primer/anatomy/anatomy.html Very comprehensive

Fundamentals of light microscope and electronic imaging Douglas B. Murphy. Wiley-Liss 2001 ISBN 0-471-25391-X

Molecular Biology of the Cell, fifth edition. Alberts et al. Chapter 9: Visualizing cells, page 579-616

END