STED & STED-FCS

Dr. B. Christoffer Lagerholm Facility Manager Wolfson Imaging Centre - Oxford Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital

christoffer.lagerholm@imm.ox.ac.uk

Application Examples – 2D (xy) STED Imaging

STED/Confocal image of Acetylcholine Receptor Clusters in Myotubes.Dr. Judith Cossins / Prof. David Beeson Molecular Neurosciences

STED/Confocal image of Titin Z-disk in cardiomyocytes. Dr. Katja Gemlich Department of Cardiovascular Medicine

Resolution in optical microscopy

Resolution describes the minimal distance of two points that can be distinguished.

Picture taken from http://microscopy.fsu.edu/primer/anatomy/numaperture.html

The Point Spread Function (PSF) The image of a point object

Resolution is worse in the axial dimension (along the optical axis, Z)

$$D_z = 2 \lambda \eta / (NA_{obj})^2 \dots 705$$

Than it is in the lateral dimension (XY)

> D_{XY}=1.22 λ/2NA_{obj}------ 227 FWHM

The relationship between the two is:

$$D_Z/Dxy = 3.28\eta/NA_{obj} \approx 3$$

Wide-field Microscopy

Problem – fluorescence is emitted along entire illuminated cone, not just at focus

The confocal microscope

Far-Field Microscopy *Resolution Limit: Diffraction Barrier*

Far-Field Microscopy *Resolution Limit: Diffraction Barrier*

Far-Field Fluorescence Microscopy: Focussing of light

- away from surfaces – inside cells (3D)

Far-Field Microscopy Surpassing the Resolution Limit: Turning ON/OFF

Far-Field Microscopy Surpassing the Resolution Limit: Turning ON/OFF

Far-Field Microscopy Surpassing the Resolution Limit: Turning ON/OFF

STED Microscopy *Dynamical confinement of resolution*

Nanoscale observation areas: CONTINUOUS TUNING of spatial resolution!

633nm exc, 90ps, 30kW/cm² 785nm STED 200ps, 76MHz

Focal Volume Confinement *Focal Engineering – Local Zero*

Harke / Ullal et al NanoLett 2008

Fluorescent 100nm Beads – multiple layers on cover glass

STED-Microscopy Setup

STED-Microscopy *Multi-Color Sub-Diffraction Imaging*

4 laser lines:

Synaptophysin (red, Atto647N) + syntaxin1 (green, Atto532) in neurons

Donnert et al BiophysLett 2006 / Meyer et al Small 2008

3 laser lines:

Large Stokes shift dye – only one excitation laser Mitochondria in Vero cells: outer membrane protein Tom20 (NK51, red) matrix protein Hsp70 (Dy-485XL, green)

Schmidt et al NatMethods 2008

Commercial Leica SP8 gSTED Microscope at WIMM

- The LEICA SP8 is a conventional inverted laser-scanning confocal microscope that is additionally equipped for 3D super-resolution gated STED imaging (max resolution_{x,y} ~ 50 nm; max resolution_z ~ 150 nm)
- This system is equipped with continuous wave (CW) lasers (@ 405, 458, 488, and 514 nm), a tuneable pulsed white laser (470-670 nm), a pulsed laser at 440 nm, and high power CW lasers at 592 nm, 660 nm, and soon 775 nm for STED imaging.

Schematics of Leica SP8 3D STED microscope

	592 GATED/CW	660 GATED/CW	775 PULSED
Strength	GFP/YFP	Multicolor	Most established spectral range
Colocalization studies	+	++	+
Photostability	+	++	++
Live cell	++	+	(+)

Application Example: 2D (xy) STED of AchR Clusters Dr. Judy Cossins / Prof. David Beeson, Neurosciences, WIMM

Confocal Images

Application Example: 3D (xyz) STED of Sytox Green stained cell nuclei in HeLa cells Dr. Lothar Schermelleh, Biochemistry & Micron

Confocal

gSTED at 25% Power (xy:z=100:0)

gSTED at 25% Power (xy:z=0:100) gSTED at 100% Power (xy:z=50:50)

gSTED at 100% Power (xy:z=50:50)

Application Example: Two color 2D (xy) STED of α-Tubulin (Abberior Star 440SX) / Nucler Pores (Atto 488)

gSTED 50% (440/502 nm)

Confocal 440/502 nm

De-convolved (Huygens) gSTED 50% (440/502 nm)

Application Example: Two color 2D STED of Centrosomes in Drosophila with GFP/Atto488 and TMR

Prof. Jordan Raff / Dr. Alan Wainman, Sir William Dunn School of Pathology

Spd2-GFP/GFP-Booster-Atto488

Asl/TMR

GFP signal amplified with GFP-Booster from ChromoTek (http://www.chromotek.com/products/nano-boosters/)

STED can also be combined with Fluorescence Correlation Spectroscopy (STED-FCS)

Bacia, K; Kim, SA; Schwille, P. (2006) Fluorescence crosscorrelation spectroscopy in living cells. Nature Methods 3: 83 – 89.

Live Cell Nanoscopy STED-FCS

Lipid Plasma Membrane Dynamics Nanoscale

Lipid Plasma Membrane Dynamics *Interactions on the Nanoscale: Nanodomains*

Lipid rafts/nanodomains?

- (Transient) cholesterol/sphingolipid-enriched

Lipid Raft

- Dense molecular packing (ordered)
- Compartmentalize cellular processes

Glycosphingolipids

Cytoskeleton

- Membrane divided in compartments
- Proteins: fence/hindrance in diffusion path

MSK-anchored proteins

- Hopping diffusion

Phospholipid

Why?

Kusumi

Membrane skeleton (MSK)

Pike, J.Lipid Res., Keystone meeting 2006

Problem:

Cholestero

heterogeneous
+ highly dynamic
- small (<200 nm)

Missing temporal/spatial resolution → hardly any direct observation method → highly debated

Lipid Plasma Membrane Dynamics Confocal Recordings

Confocal: Limited spatial resolution !!!

Occasional - FCS PE SM PE SM PE SM 1 1 10⁻¹ 10⁰ 10¹ 10² Correlation Time [ms]

Relative large confocal observation area: averages over details on nanoscale cannot distinguish normal diffusion from nanoscale hindered diffusion

 $\frac{\text{SM diffusion slightly prolonged but still normal}}{\tau_d \approx 20 \text{ ms (PE) / 30ms (SM)}}$ $(1/\alpha) \approx 1 \text{ (PE / SM)}$

Slower normal diffusion but no anomalous diffusion???

STED Live Cell Spectroscopy *Single Lipid Dynamics - FCS*

Arp2/3 Is Critical for Lamellipodia and Response to Extracellular Matrix Cues but Is Dispensable for Chemotaxis

Congying Wu,^{1,4,7} Sreeja B. Asokan,^{1,4,7} Matthew E. Berginski,² Elizabeth M. Haynes,^{1,4} Norman E. Sharpless,^{3,4} Jack D. Griffith,^{4,5} Shawn M. Gomez,² and James E. Bear^{1,4,6,*} ¹Department of Cell and Developmental Biology ²Departments of Biomedical Engineering, Computer Science, and Pharmacology ³Department of Genetics ⁴Lineberger Comprehensive Cancer Center ⁵Department of Biochemistry ⁴Howard Hughes Medical Institute University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA ⁷These authors contributed equally to this work ^{*}Correspondence: jbear@email.unc.edu DOI 10.1016/j.cell.2011.12.034

Cell 148, 973-987, March 2, 2012 ©2012 Elsevier Inc. 973

Measuring Hop-Diffusion with STED-FCS

Measuring Hop-Diffusion with STED-FCS

Measuring Hop-Diffusion with STED-FCS

NRK cells а С e 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.7 Diff Coeff (µm2/s) Diff Coeff (µm²/s) Diff Coeff (µm2/s) 0.6 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 —t— Control (n=32, r=10) — Control (n=32, r=10) Latrunculin B (n=12, r=4) Control - lamellipodia (n=32, r=10) Blebbistatin (n=12, r=4) 0.1 0.1 0.1 CK666 (n=18, r=4) NRK cell body (n=16, r=6) Cholesterol Oxidase (n=10, r=3) 0 0 0 100 300 0 200 0 100 200 300 0 100 200 300 FWHM (nm) FWHM (nm) FWHM (nm) IA32 cells b d f 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.7 Diff Coeff (µm2/s) Diff Coeff (µm²/s) Diff Coeff (µm²/s) 0.6 0.6 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 Control (n=33, r=10) Control (n=33, r=10) Blebbistatin (n=11, r=3) —t— Control (n=33, r=10) Latrunculin B (n=12, r=5) 0.1 0.1 0.1 IA32 2xKD (n=37, r=11) Cholesterol Oxidase (n=15, r=4) CK666 (n=30, r=7) 0 0 0 100 200 300 300 0 0 100 200 100 200 300 0 FWHM (nm) FWHM (nm) FWHM (nm)

Summary

ACKNOWLEDGEMENTS

Funding: Wolfson Foundation, MRC, Wellcome Trust Multi-User Equipment Grant, EPA Fund, User Access Fees

Image Examples: Mentioned users

Prof. Christian Eggeling, Dr. Dominic Waithe, Dr. Esther Garcia

Veronica Buckle

Contact Info:

Scientific Director: christian.eggeling@rdm.ox.ac.uk Facility Manager: christoffer.lagerholm@imm.ox.ac.uk Research Assistant: esther.garcia@imm.ox.ac.uk Image Analyst: dominic.waithe@imm.ox.ac.uk

Web-site: www.imm.ox.ac.uk/wolfson-imaging-centre-oxford

