The Power of SIM

How structured illumination improves (not only) resolution ...

Comparison with other super-resolution methods (pros & cons)

3D structured illumination microscopy of a mouse cell nucleus

lothar.schermelleh@bioch.ox.ac.uk

Super-resolution fluorescence microscopy

wide-field image...

- Specificity
- Sensitivity
- Non-invasive (in situ & in vivo)
- Multi-dimension $(x, y, z, \lambda, t,...)$
- Relative localisation & dynamics
- "Single cell" to "high throughput"

Spatial resolution is diffraction limited!

Magnification alone does not give more details!

...warmup:

"What determines the resolution of an optical microscope ?"

"... what objective would you take..."

"... a bit more difficult...?"

What's the difference in image brightness = light gathering power ? ,,... what objective would you take..."

Numerical aperture determines ...

Brightness index Lateral resolution limit Axial Resolution limit $F = (NA^{4} / Mag^{2}) \times 10^{4}$ $d_{x,y} = 0.61 \lambda_{em} / NA$ $d_{z} = 2 \lambda_{em} / NA^{2}$

(~200-300 nm) (~500-700 nm)

Only applies under ideal conditions! BUT ...

Spherical aberrations Chromatic aberrations Straylight Out-of-focus blur Detector noise

Real effective resolution is worse! (rather >250 nm lateral and $\leq 1 \ \mu m$ axial)

...improved to some extent by confocal imaging or deconvolution

"Breaking" the limit by super-resolution

3D structured illumination microscopy

Super-resolution microscopy - three major concepts

Super-resolution techniques to surpass the diffraction limit

Rainer Kaufmann

 \pm 20 nm (xy localisation precision); \pm 50 nm (structural resolution)

PALM/STORM

1µm

Resolving power of commercial super-resolution systems

3D-SIM resolves ~8-fold smaller volumes than conventional microscopy

Not only resolution matters,...

What could this be?

3D information (z-resolution, optical sectioning, imaging depth)

Not only resolution matters,

To understand the game you need to see the player move

Temporal information (live cell imaging)

Trade-offs in super-resolution microscopy

The optimal technique is determined by demands of the application! Spatial resolution is only part of the equation! **Photon budget** and **contrast** are the limiting factors in practice!

Contrast is the limit!!!

How to improve resolution with structured illumination?

The basic principle: Abbe's view

http://de.wikipedia.org/wiki/Ernst_Abbe

The basic principle: Abbe's view

The basic principle: Abbe's view

Frequency support in wide-field microscopy

Frequency space (k_x, k_y)

(a.k.a. Fourier space, reciprocal space)

Image = real space (xy)

Observable region (limited by NA & λ) Fourier Transform (inverse FT) SYTOX green CI27 mouse cell PSF **↑** k_z Full k_x "Real object" 🚫 frequency X range

SIM principle: Moiré interference

unknown structure

Fourier transform of the measured image

$$F\{f \times g\} = F\{f\} \otimes F\{g\} \longrightarrow F\{f\} = F\{f \times g\} \otimes^{-1} F\{g\}$$

known illumination function

OMX 3D-SIM microscope system

2D-SIM: microscope design

2D-SIM: microscope design

SIM principle: Moiré interference

https://mueller-physics.github.io/SIM-Collection/

3D-SIM: microscope design

3D-SIM: microscope design

Frequency support in wide-field microscopy

Real space

range

Doubling frequency support in x-y and z

adapted from Gustafsson et al. (2008), Biophys J 94

Doubling frequency support in x-y and z

Real space

Band separation

adapted from Gustafsson et al. (2008), Biophys J

From wide-field to 3D-SIM

Overview of SIM processing

Overview of SIM processing

3D optical sectioning capacity

3D-SIM of a prophase nucleus

Lamin B DAPI

3D volume rendering

Mouse C2C12

Schermelleh, Carlton et al. (2008), Science 320

3D-SIM resolves chromatin domains and interchromatin channels

Mouse C2C12

Schermelleh, Carlton et al. (2008), Science 320

Active marker are constrained to chromatin domain boundaries

Mouse C127 cell

Markaki et al., 2011, *Cold Spring Harb Perspect Biol,* 75

Super-resolution topology inactive X-chromosome

3D-SIM

Xist RNA forms distinct domains within the Barr Body Evidence for multimerisation (3-10 Xist RNAs/focus)

Can we go live?

Live cell 3D super-resolution imaging of replication sites

I0 s / frame (5 μm z-stack = 600 images / frame)

max. projection

Dynamics of RecA in DNA double strand break repair

RecA-GFP in E.coli after DSB induction

OMX Blaze: 2 s / frame (1.75 µm z-stack = 225 images, 100 time points)

Lesterlin et al., 2014, Nature (D. Sherratt Lab)

3D-SIM, just another tool in the repertoire ?

It's not that simple!

The untold story

SI reconstruction artifacts

SI reconstruction artifacts

Bleaching, Drift or vibrations Moving particles (locally constrained)

Low contrast-to-noise, Low modulation contrast Spherical aberration, Refractive index mismatch

SIMcheck - Toolbox for Fiji/ImageJ

3D-SIM workflow: quality is paramount !!!

Labelling

- Dyes (spectra, photo-stability)
- Labelling method (FPs, IF, FISH,....)
- Labelling specificity (antibodies)
- Signal-to-noise / background

Microscope

- Mechanical stability
- Photon efficiency
- Modulation contrast / calibration
- Camera: (EM)CCD / sCMOS

Sample

- Optical quality (coverslip, cleanness)
- Refractive index mismatch
- Embedding medium, RI immersion
- Imaging depth

Postprocessing

- PSF/OTF (λ -, depth-, RI-dependent)
- Channel alignment
- Quality control

Demmerle et al. 2017, Nature Protocols, in press & Kraus et al. 2017, Nature Protocols, in press

3D-SIM - pros & cons

- + **Multi-color** with standard dyes
- + Lateral and **axial resolution** improvement
- + 3D optical sectioning with enhanced contrast
- + Light dosage lower than other SR-techniques
- + Relative large **imaging depth** (few 10 µm, w/ Silicon)
- + Sensitivity and speed (OMX Blaze) \rightarrow live cell imaging
- Only moderate lateral resolution improvement
- Mathematical reconstruction → artifacts
- High requirements on sample quality and system calibration

Context

Versatility

Challenges

SIM rocks!

Thanks to Jürgen Neumann, Lin Shao, Julio Mateo Langerak for sharing slides

