Micron Advanced Light Microscopy Course 2017

Introductory lecture

Richard M Parton - <u>Richard.Parton@bioch.ox.ac.uk</u> Department of Biochemistry University of Oxford

Organisation of the course:

- •Day 1 Principles of Microscopy
- •Day 2 Generating contrast
- •Day 3 Imaging approaches for molecules & cells
- •Day 4 Beyond conventional imaging
- •Day 5 EM (optional)

Additional Micron lectures on imaging handling and analysis

Organisation of the course:

Day 1 - Principles of Microscopy
Day 2 - Generating contrast
Day 3 - Imaging approaches for molecules & cells
Day 4 - Beyond conventional imaging
LECTURES 6-8
Day 5 - EM (optional)

•Additional Micron lectures on imaging handling and analysis

Catering for a diverse intake: the knowledge base survey

- * To assess the starting knowledge
- * To assess the diversity of experience
- * To tailor the course material

Catering for a diverse intake: the knowledge base survey

- * To assess the starting knowledge
- * To assess the diversity of experience
- * To tailor the course material

Simple answer scheme:

- a) Have never heard of this
- b) Have heard of this, but don't know what it means
- c) Have a vague idea of what it means
- d) Have a clear idea of what it means and can explain it

- Questions structured:

Q1-5 favour biologists Q5-10 favour physicists / engineers - questions increasing in difficulty

- •Explain why microscopy is so important
- •Explain how the light microscope works:

the basic physics of optics and microscopes

designing and building bespoke microscope

- •Explain why microscopy is so important
- •Explain how the light microscope works:

the basic physics of optics and microscopes

designing and building bespoke microscope

•Make you aware of what is really important in good microscopy

•Describe the different techniques available and their application

- •Explain why microscopy is so important
- •Explain how the light microscope works:

the basic physics of optics and microscopes

designing and building bespoke microscope

•Make you aware of what is really important in good microscopy

•Describe the different techniques available and their application

•Explain of how to get the best from your microscope:

- Specimen preparation and labeling
- Contrast enhancement, phase and DIC
- Fluorescence for detecting specific molecules
- Digital acquisition and deblurring images
- Dealing with images appropriately

•Explain why microscopy is so important

•Explain how the light microscope works:

the basic physics of optics and microscopes

designing and building bespoke microscope

•Make you aware of what is really important in good microscopy

Describe the different techniques available and their application

•Explain of how to get the best from your microscope:

Specimen preparation and labeling

- Contrast enhancement, phase and DIC
- Fluorescence for detecting specific molecules
- Digital acquisition and deblurring images
- Dealing with images appropriately

100 years ago:

Magnify small things to visualise more details

100 years ago:

Magnify small things to visualise more details

Now:

Microscopy is fundamentally important to modern biology

http://www.nature.com/milestones/milelight/index.html

1595	Invention of the microscope (Milestone 1)	1980	Calcium probes (Milestone 12)
1858	First histological stain (Milestone 2)	1981	Video-enhanced differential interference contrast (Milestone 8
1871	Synthesis of fluorescein (Milestone 2)		TIRF microscopy (Milestone 13)
1873	Diffraction limit theory (Milestone 3)	1983	Deconvolution microscopy (Milestone 14)
1911	First fluorescence microscope (Milestone 4)	1987	Realization of confocal microscopy (Milestone 9)
1929	First epifluorescence microscope (Milestone 4)	1990	Two-photon microscopy (Milestone 15)
1935	Phase contrast microscopy (Milestone 5)	1993	Light sheet microscopy (Milestone 16)
1939	Polarization microscopy (Milestone 6)	-	Single molecule microscopy (Milestone 17)
1942	Immunofluorescence (Milestone 7)	1994	GFP (Milestone 18)
1955	Differential interference contrast (Milestone 8)	1997	Fluorescent protein-based biosensors (Milestone 19)
1961	Concept of confocal microscopy (Milestone 9)	1999	Red fluorescent proteins (Milestone 20)
1967	The dichroic mirror (Milestone 4)	2000	Breaking the diffraction limit: STED (Milestone 21)
1972	Fluorescence correlation spectroscopy (Milestone 10)	2002	Photoactivatable fluorescent proteins (Milestone 20)
1976	FRAP (Milestone 10)	2006	Breaking the diffraction limit: PALM/STORM (Milestone 21)
	EPET (Milestone 11)	L	

FRET (Milestone 11)

• 2014 Nobel Prize in Chemistry for Super Resolution: E. Betzig, S. Hell, W. Moerner

http://www.nature.com/milestones/milelight/index.html

*	1595	Invention of the microscope (Milestone 1)	* 1980	Calcium probes (Milestone 12)
	1858	First histological stain (Milestone 2)	1981	Video-enhanced differential interference contrast (Milestone 8)
	1871	Synthesis of fluorescein (Milestone 2)	- - -	TIRF microscopy (Milestone 13)
	1873	Diffraction limit theory (Milestone 3)	1983	Deconvolution microscopy (Milestone 14)
	1911	First fluorescence microscope (Milestone 4)	1987	Realization of confocal microscopy (Milestone 9)
	1929	First epifluorescence microscope (Milestone 4)	1990	Two-photon microscopy (Milestone 15)
	1935	Phase contrast microscopy (Milestone 5)	1993	Light sheet microscopy (Milestone 16)
	1939	Polarization microscopy (Milestone 6)		Single molecule microscopy (Milestone 17)
	1942	Immunofluorescence (Milestone 7)	1994	GFP (Milestone 18)
	1955	Differential interference contrast (Milestone 8)	1997	Fluorescent protein-based biosensors (Milestone 19)
	1961	Concept of confocal microscopy (Milestone 9)	1999	Red fluorescent proteins (Milestone 20)
	1967	The dichroic mirror (Milestone 4)	2000	Breaking the diffraction limit: STED (Milestone 21)
	1972	Fluorescence correlation spectroscopy (Milestone 10)	2002	Photoactivatable fluorescent proteins (Milestone 20)
	1976	FRAP (Milestone 10)	2006	Breaking the diffraction limit: PALM/STORM (Milestone 21)
	-	ERET (Milestone 11)	_	

-RET (Milestone 11)

• 2014 Nobel Prize in Chemistry for Super Resolution: E. Betzig, S. Hell, W. Moerner

http://www.nature.com/milestones/milelight/index.html

*(1595	Invention of the microscope (Milestone 1)	*	1980	Calcium probes (Milestone 12)
	1858	First histological stain (Milestone 2)		1981	Video-enhanced differential interference contrast (Milestone 8)
	1871	Synthesis of fluorescein (Milestone 2)		- - -	TIRF microscopy (Milestone 13)
	1873	Diffraction limit theory (Milestone 3)		1983	Deconvolution microscopy (Milestone 14)
*(1911	First fluorescence microscope (Milestone 4)	*	1987	Realization of confocal microscopy (Milestone 9)
	1929	First epifluorescence microscope (Milestone 4)		1990	Two-photon microscopy (Milestone 15)
	1935	Phase contrast microscopy (Milestone 5)		1993	Light sheet microscopy (Milestone 16)
	1939	Polarization microscopy (Milestone 6)		- - -	Single molecule microscopy (Milestone 17)
	1942	Immunofluorescence (Milestone 7)		1994	GFP (Milestone 18)
	1955	Differential interference contrast (Milestone 8)		1997	Fluorescent protein-based biosensors (Milestone 19)
	1961	Concept of confocal microscopy (Milestone 9)		1999	Red fluorescent proteins (Milestone 20)
	1967	The dichroic mirror (Milestone 4)		2000	Breaking the diffraction limit: STED (Milestone 21)
	1972	Fluorescence correlation spectroscopy (Milestone 1	0)	2002	Photoactivatable fluorescent proteins (Milestone 20)
	1976	FRAP (Milestone 10)		2006	Breaking the diffraction limit: PALM/STORM (Milestone 21)
	-	FRET (Milestone 11)	• 2014 No	obel Prize ir	n Chemistry for Super Resolution: E. Betzig, S. Hell, V

6

http://www.nature.com/milestones/milelight/index.html

*(1595	Invention of the microscope (Milestone 1)	*	1980	Calcium probes (Milestone 12)
	1858	First histological stain (Milestone 2)		1981	Video-enhanced differential interference contrast (Milestone 8)
	1871	Synthesis of fluorescein (Milestone 2)		- - -	TIRF microscopy (Milestone 13)
	1873	Diffraction limit theory (Milestone 3)		1983	Deconvolution microscopy (Milestone 14)
*(1911	First fluorescence microscope (Milestone 4)	*	1987	Realization of confocal microscopy (Milestone 9)
	1929	First epifluorescence microscope (Milestone 4)		1990	Two-photon microscopy (Milestone 15)
	1935	Phase contrast microscopy (Milestone 5)		1993	Light sheet microscopy (Milestone 16)
	1939	Polarization microscopy (Milestone 6)		- - -	Single molecule microscopy (Milestone 17)
	1942	Immunofluorescence (Milestone 7)		1994	GFP (Milestone 18)
*(1955	Differential interference contrast (Milestone 8)	*	1997	Fluorescent protein-based biosensors (Milestone 19)
	1961	Concept of confocal microscopy (Milestone 9)		1999	Red fluorescent proteins (Milestone 20)
	1967	The dichroic mirror (Milestone 4)		2000	Breaking the diffraction limit: STED (Milestone 21)
	1972	Fluorescence correlation spectroscopy (Milestone 1	0)	2002	Photoactivatable fluorescent proteins (Milestone 20)
	1976	FRAP (Milestone 10)		2006	Breaking the diffraction limit: PALM/STORM (Milestone 21)
	-	FRET (Milestone 11)	2014 No	bel Prize ir	n Chemistry for Super Resolution: E. Betzig, S. Hell, V

6

http://www.nature.com/milestones/milelight/index.html

1595	Invention of the microscope (Milestone 1))*	1980	Calcium probes (Milestone 12)
1858	First histological stain (Milestone 2)		1981	Video-enhanced differential interference contrast (Milestone 8)
1871	Synthesis of fluorescein (Milestone 2)		- - -	TIRF microscopy (Milestone 13)
1873	Diffraction limit theory (Milestone 3)		1983	Deconvolution microscopy (Milestone 14)
1911	First fluorescence microscope (Milestone 4)	*	1987	Realization of confocal microscopy (Milestone 9)
1929	First epifluorescence microscope (Milestone 4)		1990	Two-photon microscopy (Milestone 15)
1935	Phase contrast microscopy (Milestone 5)		1993	Light sheet microscopy (Milestone 16)
1939	Polarization microscopy (Milestone 6)		- - -	Single molecule microscopy (Milestone 17)
1942	Immunofluorescence (Milestone 7)	*	1994	GFP (Milestone 18)
1955	Differential interference contrast (Milestone 8)	*	1997	Fluorescent protein-based biosensors (Milestone 19)
1961	Concept of confocal microscopy (Milestone 9)		1999	Red fluorescent proteins (Milestone 20)
1967	The dichroic mirror (Milestone 4)		2000	Breaking the diffraction limit: STED (Milestone 21)
1972	Fluorescence correlation spectroscopy (Milestone 10)	2002	Photoactivatable fluorescent proteins (Milestone 20)
1976	FRAP (Milestone 10)		2006	Breaking the diffraction limit: PALM/STORM (Milestone 21)
-	FRET (Milestone 11)	2014 No	bel Prize ir	n Chemistry for Super Resolution: E. Betzig, S. Hell, V

http://www.nature.com/milestones/milelight/index.html

1595	Invention of the microscope (Milestone 1)	*	1980	Calcium probes (Milestone 12)
1858	First histological stain (Milestone 2)		1981	Video-enhanced differential interference contrast (Milestone 8)
1871	Synthesis of fluorescein (Milestone 2)		- - -	TIRF microscopy (Milestone 13)
1873	Diffraction limit theory (Milestone 3)		1983	Deconvolution microscopy (Milestone 14)
1911	First fluorescence microscope (Milestone 4)	*	1987	Realization of confocal microscopy (Milestone 9)
1929	First epifluorescence microscope (Milestone 4)		1990	Two-photon microscopy (Milestone 15)
1935	Phase contrast microscopy (Milestone 5)		1993	Light sheet microscopy (Milestone 16)
1939	Polarization microscopy (Milestone 6)			Single molecule microscopy (Milestone 17)
1942	Immunofluorescence (Milestone 7)	*	1994	GFP (Milestone 18)
1955	Differential interference contrast (Milestone 8)) *	1997	Fluorescent protein-based biosensors (Milestone 19)
1961	Concept of confocal microscopy (Milestone 9)		1999	Red fluorescent proteins (Milestone 20)
1967	The dichroic mirror (Milestone 4)	*	2000	Breaking the diffraction limit: STED (Milestone 21)
1972	Fluorescence correlation spectroscopy (Milestone 1	0)	2002	Photoactivatable fluorescent proteins (Milestone 20)
1976	FRAP (Milestone 10)		2006	Breaking the diffraction limit: PALM/STORM (Milestone 21)
	FRET (Milestone 11)	• 2014 No	bel Prize ir	n Chemistry for Super Resolution: E. Betzig, S. Hell, W

http://www.nature.com/milestones/milelight/index.html

1595	Invention of the microscope (Milestone 1)) *	1980	Calcium probes (Milestone 12)
1858	First histological stain (Milestone 2)		1981	Video-enhanced differential interference contrast (Milestone 8)
1871	Synthesis of fluorescein (Milestone 2)		-	TIRF microscopy (Milestone 13)
1873	Diffraction limit theory (Milestone 3)		1983	Deconvolution microscopy (Milestone 14)
1911	First fluorescence microscope (Milestone 4)	*	1987	Realization of confocal microscopy (Milestone 9)
1929	First epifluorescence microscope (Milestone 4)		1990	Two-photon microscopy (Milestone 15)
1935	Phase contrast microscopy (Milestone 5)		1993	Light sheet microscopy (Milestone 16)
1939	Polarization microscopy (Milestone 6)			Single molecule microscopy (Milestone 17)
1942	Immunofluorescence (Milestone 7)	*	1994	GFP (Milestone 18)
1955	Differential interference contrast (Milestone 8)	*	1997	Fluorescent protein-based biosensors (Milestone 19)
1961	Concept of confocal microscopy (Milestone 9)		1999	Red fluorescent proteins (Milestone 20)
1967	The dichroic mirror (Milestone 4)	*	2000	Breaking the diffraction limit: STED (Milestone 21)
1972	Fluorescence correlation spectroscopy (Milestone 1	10)	2002	Photoactivatable fluorescent proteins (Milestone 20)
1976	FRAP (Milestone 10)	*	2006	Breaking the diffraction limit: PALM/STORM (Milestone 21)
	FRET (Milestone 11)	• 2014 No	bel Prize ir	n Chemistry for Super Resolution: E. Betzig, S. Hell, V

• Spatial information at the cellular level not easily available from biochemistry

- Spatial information at the cellular level not easily available from biochemistry
- Relatively non-invasive

- Spatial information at the cellular level not easily available from biochemistry
- Relatively non-invasive
- Very sensitive, can follow distribution and interactions down to the molecular level

- Spatial information at the cellular level not easily available from biochemistry
- Relatively non-invasive
- Very sensitive, can follow distribution and interactions down to the molecular level
- Quantitative

- Spatial information at the cellular level not easily available from biochemistry
- Relatively non-invasive
- Very sensitive, can follow distribution and interactions down to the molecular level
- Quantitative
- Can be applied to live cells to follow sequences of events

- Spatial information at the cellular level not easily available from biochemistry
- Relatively non-invasive
- Very sensitive, can follow distribution and interactions down to the molecular level
- Quantitative
- Can be applied to live cells to follow sequences of events
- Allows experimental manipulation

Useful size range for light microscopy

We use the light microscope to image structures and substructures within the range: from about 300 μm down to about 0.3 μm (300 nm)

Fundamentals of light microscope and electronic imaging. Douglas B. Murphy. Wiley-Liss 2001

Useful size range for light microscopy

Fundamentals of light microscope and electronic imaging. Douglas B. Murphy. Wiley-Liss 2001

Useful size range for light microscopy

Fundamentals of light microscope and electronic imaging. Douglas B. Murphy. Wiley-Liss 2001

 Microscopes tend to be complicated and expensive Don't mess with what you don't understand

- Microscopes tend to be complicated and expensive Don't mess with what you don't understand
- Microscopes work purely to the laws of optical physics there is no witchcraft!

- Microscopes tend to be complicated and expensive Don't mess with what you don't understand
- Microscopes work purely to the laws of optical physics there is no witchcraft!

• If you understand the principles involved then it is easy to understand how to get the best from your microscope.

- Microscopes tend to be complicated and expensive Don't mess with what you don't understand
- Microscopes work purely to the laws of optical physics there is no witchcraft!

- If you understand the principles involved then it is easy to understand how to get the best from your microscope.
- Microscopes are all basically the same

- Microscopes tend to be complicated and expensive Don't mess with what you don't understand
- Microscopes work purely to the laws of optical physics there is no witchcraft!

- If you understand the principles involved then it is easy to understand how to get the best from your microscope.
- Microscopes are all basically the same
- It is quite hard to break a microscope

Understanding what goes on in the Microscope

Understanding what goes on in the Microscope

Understanding what goes on in the Microscope

.....the ability to see stuff

1. Contrast

- 1. Contrast
- 2. Resolution

- 1. Contrast
- 2. Resolution
- 3. Sampling

- 1. Contrast
- 2. Resolution
- 3. Sampling
- 4. Noise

.....the ability to see stuff

- 1. Contrast
- 2. Resolution
- 3. Sampling
- 4. Noise

and nothing else!

- 1. Contrast
- 2. Resolution
- 3. Sampling
- 4. Noise

.....the ability to distinguish stuff

Contrast

What is really important in microscopy? Contrastthe ability to distinguish stuff Biological specimens have low inherent contrast:

What is really important in microscopy? Contrastthe ability to distinguish stuff Biological specimens have low inherent contrast:

What is really important in microscopy? Contrastthe ability to distinguish stuff Biological specimens have low inherent contrast:

.....can't resolve anything without contast

Bright Field Contrast Techniques

.....enhance features by transforming differences in the cell into differences in brightness

Bright Field Contrast Techniques

.....enhance features by transforming differences in the cell into differences in brightness

RMP: Onion epidermis bright field

Bright Field Contrast Techniques

.....enhance features by transforming differences in the cell into differences in brightness

DIC differential interference contrast

RMP: Onion cytoplasmic streaming under DIC

Fluorescence Contrast Techniques

.....use selective fluorescent probes to label features

Fluorescence Contrast Techniques

.....use selective fluorescent probes to label features

GFP green fluorescent protein

Fluorescence Contrast Techniques

.....use selective fluorescent probes to label features

inorganic fluorescent labels

- 1. Contrast
- 2. Resolution
- 3. Sampling
- 4. Noise

Resolution

.....the ability to see small stuff

Resolution

.....the ability to see small stuff

Magnifying is not enough:

C STEC Introneys Ltd S Elensity

Google

What is really important in microscopy? **Resolution**the ability to see small stuff

Magnifying is not enough:

Krebs Tower, Department of Biochemistry, Oxford Google Earth, from 10m

empty magnification!

.....resolution is limited

RESOLUTION

Normal resolution

Super resolution

Dobbie et al Live Cell Imaging 2nd Edition. Chapter 10. Cold Spring Harbour Press

RESOLUTION

Normal resolution

Dobbie et al Live Cell Imaging 2nd Edition. Chapter 10. Cold Spring Harbour Press

Super resolution

Understanding what limits Resolution

* Convolution and the Point Spread Function* The Rayleigh Criterion (D)

Convolution and the Point Spread Function

An image represents the output of the optics and detector of the imaging system

image ≠ object image = object ⊗ PSF

Convolution and the Point Spread Function

An image represents the output of the optics and detector of the imaging system

image ≠ object image = object ⊗ PSF

Sample object: a "subresolution" fluorescent bead

Fundamentals of light microscope and electronic imaging. Douglas B. Murphy. Wiley-Liss 2001

- *LECTURE 4*
- "convolution" by the microscope optics = the PSF

Two small objects

Two small objects

Resolution (D_R) depends upon the objective and wavelength of light:

Two small objects

Resolution (D_R) depends upon the objective and wavelength of light:

$$D_{R} = 1.22 \times \lambda / Na_{obj} + Na_{cond}$$

Two small objects

Resolution (D_R) depends upon the objective and wavelength of light:

$$D_{R} = 1.22 \times \lambda / Na_{obj} + Na_{cond}$$

Considering x10 objective, Na 0.25, fluorescence emission 520 nm:
Optical resolution: The Rayleigh Criterion (D_R)

Two small objects Convolved by microscope Just resolved Not resolved Airy patterns must **Overlap by less** Than 42% of the **Maximal intensities** **Resolution** (D_R) depends upon the objective and wavelength of light:

$$D_{R} = 1.22 \times \lambda / Na_{obj} + Na_{cond}$$

Considering x10 objective, Na 0.25, fluorescence emission 520 nm:

$$D_{R} = 1.22 \times 520_{nm}/2 \times 0.25$$

 $D_{R} = 1.269 \text{ um}$

Z

Resolution is worse in the axial dimension (along the optical axis, Z)

$$D_{Z} = 2 \lambda \eta / (NA_{obj})^{2} \dots 705$$

 $(\eta = refractive index of the object medium)$

Resolution is worse in the axial dimension (along the optical axis, Z)

$$D_{Z} = 2 \lambda \eta / (NA_{obj})^{2} \dots 705$$

 $(\eta = retractive index of the object medium)$

Than it is in the lateral dimension (XY)

$$D_{XY} = 1.22 \lambda / 2NA_{obj} = 227$$

FWHM

Resolution is worse in the axial dimension (along the optical axis, Z)

$$D_Z = 2 \lambda \eta / (NA_{obj})^2 \dots 705$$

(η = refractive index of the object medium)

Than it is in the lateral dimension (XY)

$$D_{XY}$$
=1.22 λ /2NA_{obj}..... 227 *FWHM*

The relationship between the two is:

$$D_Z/Dxy = 3.28\eta/NA_{obj} \approx 3$$

Resolution: Down to the molecular scale?

resolution $\approx \lambda_{em}/2$ (Z resolution ≈ 2.5 times worse)

XY resolution ~ 230 nm Z resolution ~ 700 nm

GFP is ~ 5 x5 x5 nm MT is ~ 25 nm diameter

Resolution: Down to the molecular scale?

resolution $\approx \lambda_{em}/2$ (Z resolution ≈ 2.5 times worse)

XY resolution ~ 230 nm Z resolution ~ 700 nm

GFP is $\sim 5 \times 5 \times 5 \text{ nm}$ MT is $\sim 25 \text{ nm}$ diameter

```
Solution 1 - F* techniques
FRAP, FRET, FLIM etc
*LECTURE 8*
```

Resolution: Down to the molecular scale?

resolution $\approx \lambda_{em}/2$ (Z resolution ≈ 2.5 times worse)

XY resolution ~ 230 nm Z resolution ~ 700 nm

GFP is $\sim 5 x5 x5 nm$ MT is $\sim 25 nm$ diameter

Solution 1 - F* techniques

FRAP, FRET, FLIM etc

LECTURE 8

Solution 2 - Super resolution techniques

Localisation microscopy, Structured illumination, STED *LECTURES 9-11*

What is really important in microscopy?

- 1. Contrast
- 2. Resolution
- 3. Sampling
- 4. Noise

Sampling

.....correctly reading the available information

.....poor sampling limits the resolution achieved

......Magnification and Sampling

Specimen Fine Detail Detail imaged

by microscope

*optical resolution

......Magnification and Sampling

Specimen Fine Detail Detail imaged

*magnification *optical resolution

Undersampling all detail not resolved Large field of view

auxiliary magnification to match image to detector

All resolvable detail recorded

too magnified

......Magnification and Sampling

Specimen Fine Detail Detail imaged by microscope

*magnification *optical resolution

image on detector

Oversampling Empty magnification Blurred image Limited field of view

......Magnification and Sampling

Specimen Fine Detail Detail imaged by microscope

*magnification *optical resolution

image on detector

Oversampling Empty magnification Blurred image Limited field of view

What is the optimum magnification.....?

too magnified

......Magnification and Sampling

Specimen Fine Detail Detail imaged by microscope

*magnification *optical resolution

image on detector

Oversampling Empty magnification Blurred image Limited field of view

What is the optimum magnification.....?

For optimal imaging: magnification must match the resolution to the detector

too magnified

......Magnification and Sampling

Specimen Fine Detail Detail imaged

by microscope

*magnification *optical resolution

......Magnification and Sampling

Specimen Fine Detail Detail imaged by microscope

*magnification *optical resolution

......Magnification and Sampling

Specimen Fine Detail Detail imaged by microscope

*magnification *optical resolution

sampling a sine wave

Diatom image: <u>http://www.micromagnus.net</u>/index_micro.html

......Magnification and Sampling

sampling a sine wave

Specimen Fine Detail Detail imaged by microscope

*magnification *optical resolution

Sampling 1.5 times per cycle

Diatom image: <u>http://www.micromagnus.net</u>/index_micro.html

......Magnification and Sampling

sampling a sine wave

Specimen Fine Detail Detail imaged by microscope

*magnification *optical resolution

Sampling 1.5 times per cycle

undersampled

Diatom image: http://www.micromagnus.net/index_micro.html

......Magnification and Sampling

Specimen Fine Detail Detail imaged by microscope

*magnification *optical resolution

 $\frac{1}{2}$ intensity profile ~ a sine wave $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

sampling a sine wave Sampling 1.5 times per cycle undersampled Sampling 2.0 times per cycle

Diatom image: http://www.micromagnus.net/index_micro.html

......Magnification and Sampling

Specimen Fine Detail Detail imaged by microscope

*magnification *optical resolution

sampling a sine wave

Sampling 2.0 times per cycle undersampled

Diatom image: <u>http://www.micromagnus.net</u>/index_micro.html

......Magnification and Sampling

Specimen Fine Detail Detail imaged by microscope

*magnification

*optical resolution

 $\underbrace{ \underbrace{ \mathsf{A}} }_{\mathsf{S}}$ intensity profile ~ a sine wave $\underbrace{ \underbrace{ \mathsf{A}} }_{\mathsf{S}}$

Diatom image: http://www.micromagnus.net/index_micro.html

......Magnification and Sampling

Specimen Fine Detail Detail imaged by microscope

*magnification

*optical resolution

 $\underbrace{ \underbrace{ \mathsf{A}} }_{\mathsf{S}}$ intensity profile ~ a sine wave $\underbrace{ \underbrace{ \mathsf{A}} }_{\mathsf{S}}$

Diatom image: http://www.micromagnus.net/index_micro.html

......Magnification and Sampling

Specimen Fine Detail Detail imaged by microscope

magnification

Optimum = 2.3 times per cycle = Nyquist sampling

Diatom image: <u>http://www.micromagnus.net</u>/index_micro.html

For optimal imaging the magnification must match the resolution to the detector (eye or camera).....

optimal total mag X resolvable distance = 3x detector element size

For optimal imaging the magnification must match the resolution to the detector (eye or camera).....

optimal total mag X resolvable distance = 3x detector element size

Considering Fluorescence imaging x100 objective; 1.4 Na; 520 nm emission,.....

For optimal imaging the magnification must match the resolution to the detector (eye or camera).....

optimal total mag X resolvable distance = 3x detector element size

Considering Fluorescence imaging x100 objective; 1.4 Na; 520 nm emission,.....

total mag	resolvable distance	Detector Element
100 objective X x1.0 Aux mag	Ι.22 × λ520 / 2Na	Camera pixel element = 6.6 um (x3 taking into account Nyquist)

For optimal imaging the magnification must match the resolution to the detector (eye or camera).....

optimal total mag X resolvable distance = 3x detector element size

Considering Fluorescence imaging x100 objective; 1.4 Na; 520 nm emission,.....

total mag	resolvable distance	Detector Element
objective X x1.0 Aux mag	I.22 x λ520 / 2Na	Camera pixel element = 6.6 um (x3 taking into account Nyquist)

optimal total mag = (2Na) $3 \times \text{Detector Element}$ /I.22 x 520 nm

x100

≈ 87 times magnification

x100 obj = GOOD SAMPLING

For optimal imaging the magnification must match the resolution to the detector (eye or camera).....

optimal total mag X resolvable distance = 3x detector element size

.....OR pixel size must be ~1/3 of the resolution

What is really important in microscopy?

- 1. Contrast
- 2. Resolution
- 3. Sampling
- 4. Noise

Noise / Signal to Noise (S/N)

https://www.forbes.com/2001/01/26/0126movers.html#12f309d936c5

Noise / Signal to Noise (S/N)

https://www.forbes.com/2001/01/26/0126movers.html#12f309d936c5

Noise / Signal to Noise (S/N)

https://www.forbes.com/2001/01/26/0126movers.html#12f309d936c5

Signal to Noise - definitions:

• One of the most important limitations to image quality and image processing

Signal to Noise - definitions:

One of the most important limitations to image quality and image processing

Signal to Noise - definitions:

One of the most important limitations to image quality and image processing

- Noise is NOT background, auto-fluorescence or dark signal
- Good image data has a high S:N ratio (>4)
- Fundamental limit = Poisson distributed statistics of photon detection (shot noise)

Statistics of photon counting dictate the minimum useful signal

```
Average signal = 9,S:N ratio = 3Average signal = 100,S:N ratio = 10Average signal = 10,000,S:N ratio = 100
```

A meaningful difference in intensity needs to be at least three times the noise level

Additional sources of noise from digitisation, detector readout, thermal noise.

Resolution, contrast, noise

Noise limits the contrast which limits the details that can be resolved
 Noise limits resolution

Gonzales & Woods, 2002. Digital Image Processing 2nd Ed. Prentice-Hall Inc, USA.

Gonzales & Woods, 2002. Digital Image Processing 2nd Ed. Prentice-Hall Inc, USA.

Improving signal to noise

increased signal increases S/N = improved contrast

5x integration time

noisy image

(scaled)

increased number of photons counted

improved S/N

_ _ _

34

ImageJ

Which technique do I use?

Don't make out like you don't know what to do!

* Asking the right questions

- * Asking the right questions
- * Picking the right technique

- * Asking the right questions
- * Picking the right technique
- * Applying the technique well

- * Asking the right questions
- * Picking the right technique
- * Applying the technique well
- * Analysing / interpreting the data properly

Be clear what you want from your experiment

Be aware of the different techniques

Be aware of the different techniques Their strengths Their weaknesses Their availability

Be aware of the different techniques *VISIT A FACILITY* http://www.micron.ox.ac.uk/microngroup/about.php
Their weaknesses Their availability

Be aware of the different techniques *VISIT A FACILITY* http://www.micron.ox.ac.uk/microngroup/about.php
Their weaknesses Their availability

Understand the limitations of your material

Be aware of the different techniques *VISIT A FACILITY* http://www.micron.ox.ac.uk/microngroup/about.php
Their weaknesses Their availability

Understand the limitations of your material Viability Thickness Brightness

Be aware of the different techniques *VISIT A FACILITY* http://www.micron.ox.ac.uk/microngroup/about.php
Their weaknesses Their availability

Understand the limitations of your material *DISCUSS YOUR APPLICATION* Viability Thickness Brightness

Bright field / fluorescence (contrast generation) Lectures 1,4 & 6

Bright field / fluorescence (contrast generation) Lectures 1,4 & 6

Live cell imaging Fixed material imaging

(dynamics vs detail) Lectures 4 & 6

- Bright field / fluorescence (contrast generation) Lectures 1,4 & 6
- Live cell imaging Fixed material imaging (dynamics vs detail) Lectures 4 & 6
- Confocal techniques (scanning, optical sectioning) Wide field techniques (Speed, sensitivity)
 - Lectures 6 & 7

- Bright field / fluorescence (contrast generation) Lectures 1,4 & 6
- Live cell imaging Fixed material imaging (dynamics vs detail) Lectures 4 & 6
- Confocal techniques (scanning, optical sectioning) Wide field techniques (Speed, sensitivity)
 - Lectures 6 & 7
- Super-resolution techniques Techniques for molecular scale dynamics / interactions

Lectures 8-11

END

http://www.theguardian.com/science/2011/sep/11/genetically-modified-glowing-cats

Reference Material

http://www.olympusmicro.com/ Very comprehensive and well written

http://micro.magnet.fsu.edu/primer/anatomy/anatomy.html Very comprehensive

Fundamentals of light microscope and electronic imaging Douglas B. Murphy. Wiley-Liss 2001 ISBN 0-471-25391-X http://www.biology.uoc.gr/courses/BIOL493/documents/book.pdf

Molecular Biology of the Cell, fifth edition. Alberts et al. Chapter 9: Visualizing cells, page 579-616