

Radcliffe Department of Medicine

Fluorescent Dyes and Proteins

Christian Eggeling

MRC Human Immunology Unit & Wolfson Imaging Centre Oxford Weatherall Institute of Molecular Medicine University of Oxford

<u>Previously:</u> Max Planck Institute for biophysical Chemistry Dep. NanoBiophotonic (Prof. Hell) Göttingen, Germany

Fluorescence Microscopy

Label molecule of interest with signaling label

Live Cell Far-Field Microscopy Fluorescence

Study specific molecular processes in the living cell:

Liver-Cells: Nucleus and Cell-skeleton

Excite fluorescence by laser light

Classification of **Fluorescencent probes** in three types:

Intrinsic probes

• ideal but rare (e.g. tryptophan in proteins)

Extrinsic associating probes

- non-covalent attachment (e.g. adsorption, ...)
- hydrophylic, hydrophobic, amphiphilic character, ...

Extrinsic covalently bound probes (fluorophore, dye)

- covalently attached dye-label (synthesize)
- fluorescent protein
- advantage: generally known location

Examples of Fluorophores

Tryptophan (intrinsic)

rhodamines

High Extent of delocalization in π -electron system ($\pi \rightarrow \pi^*$ transition)

... is what is needed for fluorescent molecules

Absorption of a photon \Rightarrow electronic transition

Electronic transition: Promotion of an electron from an orbital of a molecule in the ground state to an (antibonding) orbital higher in energy

Electronic States: - S₀, S₁, ...

Vibronic sub-states in each electronic state (molecular vibrations)

Visualisation:

Perrin-Jablonski diagram

Fluorescence: Transitions after Absoprtion

7

The probability of transitions - Absorbance

absorbance = efficiency of absorption at wavelength λ :

Beer-Lambert law

 $\epsilon(\lambda)$: molar (decadic) absorption coefficent [L mol⁻¹ cm⁻¹]

- c: concentration [mol L⁻¹]
- *I*: absorption path length [cm]

Examples: $\epsilon(max) = Benzene \sim 10^2 / Anthracene \sim 10^4 / Rhodamine B \sim 10^5$

Fluorescence: Transitions after Absoprtion

Fluorescence: Stokes Shift + Spectral Broadening

Stokes shift: gap between max. of first absorption band and max. of fluorescence

 $\lambda_{em.} > \lambda_{abs.}$

<u>vibrational relaxation</u>: $\Delta E_{abs} > \Delta E_{em}$

(in)homogeneous spectral broadening vibrations/ fluctuations of the structure

Non-radiative transition between two electronic states ($S_2 \rightarrow S_1$ or $S_1 \rightarrow S_0$)

any transition followed by fast vibrational relaxation (e.g. collision) to vibronic ground state

- $S_1 \rightarrow S_0$ is less efficient than $S_2 \rightarrow S_1$ (larger energy gap)
- $S_1 \rightarrow S_0$ IC competes with fluorescence
- picoseconds

Intersystem crossing

Non-radiative transition between two isoenergetic vibrational levels of different spin multiplicities $(S_1 \rightarrow T_1) - \text{spin conversion}$

•Competes with fluorescence and IC

•Forbidden - slow process: $10^{-10} - 10^{-8}$ s

Phosphorescence

radiative de-excitation $(T_1 \rightarrow S_0)$

•Forbidden - slow process (long lifetime µs to s)

•Higher wavelengths than those of fluorescence (Hund's rule – energy(triplet) < energy(singlet))

•Competes with non-radiative processes (especially in solution, collisional de-excitation) (mainly visible at low T or in rigid medium)

Triplet-triplet absorption

- $T_1 \rightarrow T_{2/n}$
- Absorption of a second photon of same or different wavelength
- When T₁ is highly populated

- Possibility of re-intersystem crossing to $S_n \rightarrow S_1$
 - $S_1 \rightarrow S_{2/n}$ absorption also possible
 - usually ~ 1/10-1/100 $\varepsilon(0\rightarrow 1)$

Fluorescence Parameters: Lifetime Quantum Yield

Excited-state lifetimes

Definition of rate constants:

 k_{nr} : Non-radiative decay (ic + isc) $k_{\rm r}$: radiative decay (flu. + phosph.) $k_{\rm isc}$: intersystem-crossing

Lifetime of excited state: sum of all de-excitation rate constants Singlet \overline{S}

$$\tau_S = \frac{\tau_S}{(k_{ic\,ic}^S + k_{isc}^S) + k_r^S}$$

 $\tau_T = \frac{1}{k_{m}^T + k_{m}^T}$

Triplet

Exponential decay:

$$\frac{dS_1}{dt} = -\left[(k_{ic_{ic}}^S + k_{isc}^S) + k_r^S \right] S_1 = -(1/\tau_S) S_1$$

$$S_1(t) = S_1(0) \exp(-t/\tau_S)$$

Fluorescence lifetime

Fluorescence lifetime (S₁) important

-defines the time window of observation -sensitive on environment (solvent !!!)

Laser dyes: 1 - 4 ns

Pyrene: 410 ns

Ruthenium: 14 µs

Fluorescence: Quantum Yield

Fluorescence quantum yield

 $\Phi_{\rm F} = \frac{k_{\rm r}^{\rm S}}{k_{\rm r}^{\rm S} + k_{\rm nr}^{\rm S}} = k_{\rm r}^{\rm S} \tau_{\rm S}$ Fraction of photon absorptions/excitations to S₁ that return to S₀ by fluorescence (and not by internal conversion...)

Fluorescence Labels

Effects of molecular structure on fluorescence

Extent of π -electron system Nature of lowest lying transition

Most fluorescent compounds are aromatic

Energy gap $\pi \rightarrow \pi^*$

generally: increase in extent of π -electron system = shift of spectra to longer λ + higher Φ_F

Examples of Fluorophores

Tryptophan

Coumarins

blue-green fluorescence 400 – 550 nm pH-sensitive

Large Stoke Shift: 50- 100 nm

Rhodamines

Substituted aromatic hydrocarbons

Nature and position of substituent can influence fluorescence characteristics

Electron-donating substituents: -OH, -OR, -NH₂, -NHR, -NR₂

- Ion electron pair involved directly in π -bonding of aromatic system (increase of conjugated system)

increase in molar absorption coefficient absorption and fluorescence spectra shifted + broad, structure-less

Cellular

Fluorescence Microscopy

Cellular Labeling - Immunolabeling

- Labeling of cellular object (protein, organelle, DNA, ...) via labeled antibodies (primary + secondary): recognizes object
- Use bright + photostable organic dyes!

Y. a. 5. OF 8

Fluorescence Labeling

Attachment of fluorophore to target molecule (e.g. protein) target

fluorophore

Cellular Labeling

Organelle-specific fluorescent probes

Example: Endoplasmatic Reticulum (ER)

Liive Cell Labeling: Fluorescent Proteins

Genetically encoded fluorescent probes

Fluorescent Proteins

Green-Fluorescent Protein (GFP)

GFP 1,9Å (1EMA, Ormo, *Science*, 1996)

-GFP from water jellyfish (*Aequorea victoria*) absorption: 395 + 475 nm fluorescence: 508 nm

- variety of Mutants:

pH-senitive (pHGFP)

enhanced fluorescence (EGFP)

shifted emission (e.g. EYFP)

- simple expression, folding and cloning

Fluorescent proteins

Tsien home page

Fluorescent proteins – living species

Transgenic GFP mouse brainwindows.wordpress.com

GFP in flies tursiops-biology.com

Fluorescent proteins - Dynamics

Miyawaki and coworkers, Cell 2008, 132, 487-498

Live Cell Labeling: Organic Dyes (SNAP/HALO/CLIP/...) Genetically encoded tags – recognizing functionalized dyes

Membrane permeable

Optimization of Fluorescence Signal

Fluorescence - *Limits*

Photophysics: Dark (triplet) states + Photobleaching

After Excitation:

Transition into long-lived dark (triplet) states DARK PERIODS (reversible loss of signal)

Enhanced reactivity (state of higher energy) PHOTOBLEACHING IRREVERSIBLE LOSS OF SIGNAL

Differential Photobleaching in Multiply-Stained Cell Cultures

<u>Limits</u>

fluorescence signal/yield

signal to background ratio

observation time

Optimization of Fluorescence Signal Fluorophore

A good fluorophore

- Large absorption/extinction coefficient ($\approx 10^5$ cm⁻¹M⁻¹)
- High fluorescence quantum yield (> 0.8)
- Large shift of the fluorescence vs. absorption, Stokes shift (> 40 nm)
- Low quantum yield of photobleaching ($< 10^{-6}$)

Optimization of Fluorescence Signal *Photobleaching at Low Laser Irradiances (Widefield)*

Simple Experiments – Cell Bleaching

Irradiate dye solution in cuvette

exponential decay over time due to photobleaching

Probability of photobleaching

 $p_b =$ # photobleached molecules / # excitations to S₁

$$p_{b} = k_{z} / (k_{01} \ S_{0}) = k_{b} \ \tau_{Flu}$$

Number of survived absorption cycles $\mu = 1/p_b$

Dye	р _b	μ	Exc/Em [nm]
Coumarins	10 ⁻³ -10 ⁻⁴	~1000 - 5000	350/450
(C-120, C-307, Carbostyril)			
Rhodamines	10 ⁻⁶ -10 ⁻⁷	~1,000,000	500/570
(Rh6G,TMR,Rh123)			
Fluorescein	3x10 ⁻⁵	~30,000	500/520
Texas Red	5x10 ⁻⁵	~20,000	590/620
Cyanin 5	5x10 ⁻⁶	~200,000	650/670
EGFP	~10 ⁻⁷	~100,000	490/520

Optimization of Fluorescence Signal Photobleaching at High Laser Irradiances (Confocal)

Low irradiances (W/cm²) \Rightarrow wide-field microscopy

Confocal microscopy ⇒ High irradiances (kW/cm²)

 ⇒ Increase of photobleaching (p_b) with irradiance I
⇒ Decrease of survived absorption cycles µ

kbSn

Sn

S₁

S₀

 k_{01}

kbs

 k_{1n}

 $k_{\rm IC}$

Photobleaching from higher excited states

Optimization of Fluorescence Signal Multi-Colour

Two-photon microscopy

Two-Photon Microscopy - Principle

Two-photon excitation microscopy

-No out-of focus photobleaching

Only excitation at region of high irradiance

-localization to focus

Schwille, Appl.Phys.B 2001, 73

Optimization of Fluorescence Signal *Two-Photon Excitation*

Two-photon excitation microscopy – photobleaching in focal region

Enhanced / saturated bleaching from S_n / T_n

- ⇒ too high photon density ⇒ one- (or more step - k_{nn}) absorption steps → ionization (more in water)
- \Rightarrow ionization (more in water)

⇒ extreme photobleaching inside focus (no bleaching outside focus)

 \Rightarrow 100/1000-times less count-rate per molecule than one-photon excitation

Alternatives

Fluorescent nanoparticles

• Quantum dots CdSe, CdTe, InAs,

Michalet X, FF Pinaud, LA Bentolila, JM Tsay, S Doose, JJ Li, G Sundaresan, AM Wu, SS Gambhir and S Weiss. (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307: 538.

Optimization of Fluorescence Signal Dark/Triplet-State Relaxation

Saturation:

Long-lived triplet (dark) state > μ s

Photobleaching:

Higher excited (triplet) states

⇒ Wait for the triplet state to relax between successive excitation events

⇒ No triplet population No higher-order photobleaching

- \Rightarrow Low-Repetition Rate Excitation
- (>µs <1 MHz) ⇒ Fast Scanning
- D-Rex Microscopy

(dark-state relaxation) Donnert, Eggeling, Hell *Nat Meth* 2006

Quantum dot basics

Qdots are inorganic nanocrystals (~10²-10³ atoms)

Core/Shell: Material determines wavelength range CdSe/ZnS (visible)

> Size determines exact wavelength 3 nm CdSe -> 520 nm emission 5.5 nm CdSe -> 630 nm emission

Surface Coat: Renders water solubility Facilitates bioconjugation

Overall size of 10 nm – 20 nm diameter

Fluorescence Nanoscopy NV centers in diamond

Nitrogen vacancies (NV) centers in diamond

Ultrastable luminescence sources (Gruber et al. Science 1996)

Fluorescence Nanoscopy STED Imaging on single NV centers

STED on "isolated" NV centers

in diamond of type IIa grown by chemical vapour deposition (Jelezko, Wrachtrup (Stuttgart))

exc: 532nm - STED: 775nm 8MHz

E. Rittweger, K.Y. Han et al, Nature Photonics 2009

Anisotropy

Polarized excitation - Anisotropy

Absorption Transition Moment

Most chromophores absorb light along a preferred direction, depending on electronic state

anthracene

Oscillation direction!

50

Polarized excitation - Photoselection

Fluorescence polarization measurements provide information about mol. mobility, size, shape, orientation and flexibility of molecules and fluidity of medium

applications:

equilibrium studies:

free and bound species have different rotational rates / anisotropies