Super-resolution fluorescence microscopy

Typical widefield image...

- high specificity
- high sensitivity
- non-invasive
- multi-D $(x, y, z, \lambda, t,...)$
- rel. localisation & dynamics

Optical resolution is diffraction limited!

Magnification alone does not give more details!

...warmup:

"What determines the resolution of an optical microscope?"

"... what objective would you take..."

"... a bit more difficult...?"

25x/1.05

40x/1.0

40x/1.1

€ 15.000,00

€ 3.786

€ 11.110,48

What's the difference in brightness?

"... what objective would you take..."

Numerical aperture determines ...

```
Brightness B = NA^4 / Mag^2 (epifluorescence)
Lateral Resolution d_{x,y} = 0.61 \lambda / NA (200-300 nm)
Axial Resolution d_z = 2 \lambda / NA^2 (500-700 nm)
```

Only applies under optimal conditions! BUT ...

spherical aberrations chromatic aberrations straylight out-of-focus blur noise sample

•••

Effective resolution is worse! (max. 250 nm lateral and $\leq 1 \mu m$ axial)

...improved to some extent by confocal imaging or deconvolution

Super-resolution fluorescence microscopy

How Structured Illumination (SI) improves not only resolution ...

& how it is realized in OMX system

Comparison of super-resolution methods (Pros & Cons)

Superresolution microscopy - three major concepts

Super-resolution light microscopy: Imaging beyond Abbe's diffraction limit

$$\Delta x, \Delta y = \frac{\lambda}{2n\sin\alpha}$$

SIM-Methods:

Apotome (conventional SIM)

2D-SIM (linear SIM)
TIRF-SIM

Photoactivation localization microscopy (PALM)

Localization

SSIM (non-linear SIM) NL-SIM

Resolving power of commercial super-resolution systems

3D-SIM resolves ~8-fold smaller volumes than conventional (confocal) microscopes

Not only resolution matters, ...

What could this be?

3D information (z-res., optical sectioning, z-depth)!

Not only resolution matters, but also context (II)

3D-SIM: 3-color • 3D optical sectioning • 8x enhanced volumetric resolution • 10-20 µm depth

How does it work?

The basic principle: Abbe's view

Sample = Structure

Periodicity

http://de.wikipedia.org/wiki/Ernst_Abbe

The basic principle: Abbe's view

The basic principle: Abbe's view

highest frequencies
(biggest α)

→
smallest structures

Image = superposed periodicities

Real space (xy)
$$\xrightarrow{\text{FFT}}$$
 Frequency space (k_x, k_y)

Image = superposed periodicities

Real space (xy)
$$\xrightarrow{\text{FFT}}$$
 Frequency space (k_x, k_y)

lmage = superposed periodicities

Image = superposed periodicities

SIM principle: Moiré interference encoding high frequency information

Fourier transform of the measured image $F\{f\times g\} = F\{f\} \otimes F\{g\} \longrightarrow F\{f\} = F\{f\times g\} \otimes^{-1} F\{g\}$ known illumination function

OMX V2 3D-SIM (early adopter)

Generating 2D-structured illumination

Generating 3D-structured illumination

Conventional SIM: Apotome uses coarse SI to remove out-of-focus blur

"Poor man's confocal" No super-resolution!

3D-structured illumination microscopy

Gustafsson et al. (2008), Biophys J 94

3D optical sectioning capacity

Example: 170 nm Fluospheres

3D SIM example: Prophase

Lamin B DAPI

3D volume rendering

3D-SIM resolves chromatin domains and interchromatin channels, leading towards nuclear pores

3D-SIM resolves chromatin domains and interchromatin channels, leading towards nuclear pores

Active transcription marks enriched at chromatin borders

Topology of the inactive X chromosome

Xist preferential localizes in decondensed interchromatin compartment within the Xi

Topology of the inactive X chromosome

Can we go live?

Live cell 3D-SIM with OMX Blaze

Inferometric SI generation + sCMOS cameras \Rightarrow 10 x faster imaging

H2B-GFP (unfixed)

RecA-GFP (E.coli)

7 µm z-stack (56 sections, 5 ms exposure)

2 s / 3D-frame (1 μ m z-stack = 120 images ; 100 ime points)

2D/3D-SIM is still resolution limited! Can we go beyond?

Non linear SIM - Saturated structured illumination microscopy (SSIM)

Non linear SIM - Saturated structured illumination microscopy (SSIM)

Resolution is theoretically unlimited!!!

Problem: photostability of the dye => works on beads but not on biological samples

Non linear SIM with switchable fluorophores (Dronpa)

Non linear SIM with switchable fluorophores (Dronpa)

Biological imaging is possible! but limited on the number of switching cycles Only xy enhanced, requires TIRF

3D-SIM, just another tool in the repertoire?

It's not that simple!

The untold story

SI reconstruction artifacts

Stripes

C127 cell nuclei, chromatin staining

High frequency noise

Low contrast-to-noise, Low modulation contrast

Halo / Doubling

Spherical aberration, Refractive index mismatch

Bleaching,
Drift or vibrations
Moving particles
(locally constrained)

Quality control: SI-Reconstruction artifacts

Quality control by Fourier analysis

Balance between contrast and bleaching

Signal

System sensitivity
Excitation intensity
Labeling density
Brightness

Background

Camera read-noise Autofluorescence Unspecific / unbound label

Stray light / Out-of-focus blur

Bleaching (less than ±30%)

Photostability
Anti-fade
Z-hight

Discrete, isolated structures

Restricted z-hight, low background

Tolerant to low intensities (>1.000 gray levels) EM 5MHz (gain 3000)

Complex structures

Extended z-hight, out-of-focus blur contribution

High intensities required (>12.000 gray levels) Conventional 5MHz

Spherical aberration: PSF changes with depth and wavelength

Sample specific channel alignment, chromatic aberration

- ▶ Biological 3D calibration sample to determine alignment parameter
- ▶ Adjust z-shift to optimally match in the center of the sample

How to obtain the perfect 3D-SIM data? Quality is paramount

Labeling

Dyes (spectra, photostability)
Labeling method (FPs, IF, FISH,....)
Labeling specificity (antibodies)
Signal-to-noise / background

Sample

Optical quality (coverslip, cleaness)
Refractive index mismatch
Embedding medium, RI immersion
Imaging depth

SI Postprocessing

PSF/OTF (λ -, depth-, RI-dependent) Channel alignment (...)

OMX Hardware

Mechanical stability
Photon efficiency
SI modulation contrast
Camera (CCD, EMCCD, sCMOS)

Dataset $x, y, z, \lambda,(t)$

Statistical analysis

Quality control
Colocalization (?)
Segmentation
Distance measurements
(...)

3D-SIM (pros & cons)

- + up to 4 colors, standard dyes (e.g., Alexa, GFP...)
- + 3D with 2x resolution in XY and Z (8x volumetric)
- + Optical sectioning over larger volumes (10 µm in z)
- + Sensitive (EMCCD/sCMOS) and fast (OMX Blaze)
 - → live cell imaging
- o Only moderate xy-resolution improvment
- Mathematical reconstruction → artifact proness
- High requirements on sample quality and system calibration

STED (pros & cons)

- + What you see is what you get → no math required!
- + High xy-resolution (50-70 nm, Leica TCS STED)
- $+ > 20 \mu m depth$
- o Maximum 2 colors (no UV!)
- o Special dyes required for optimal performance
- o Speed scales with size → full frame rather slow!
- o PMT/APD detectors less sensitive
- Only confocal axial resolution (600-800 nm)
- Relativ high energy load → photodamage
- Not ideal for 3D and live cell imaging
- Complex instrumentation, price tag

Localization Microscopy (pros & cons)

- + High localization precision (± 20 nm)
- + Quantification of single molecules (e.g., cluster analysis, single particle tracking)
- + Instrumentation relatively simple
- Localization precision ≠ structural resolution (± 50 nm, dependent on labeling density)
- o Only single plane, best with TIRF, fxed samples
- o Dye/embedding restrictions (photophysics)
- Slow
- Not suited for z-extended 3D structures

Super-resolution microscopy comes with costs!

The best SR-technique will be determined by the demands of the application!

