Fluorescent Dyes and Proteins Mark Howarth Lecturer in Bionanotechnology Department of Biochemistry

Overview

- 1. What kind of structures are fluorescent
- 2. How to make and target fluorescent probes
- 3. Fluorescent probes for cellular structure and function
- 4. Using light to control cells

Not all energy emitted as fluorescence

Quantum yield = no. of fluorescent photons emitted no. of photons absorbed

e.g. EGFP QY=0.6 For every 10 photons absorbed, 6 are emitted. (at optimal temp, pH etc.)

What sort of molecules are fluorescent?

Organic fluorophores

especially

- 1. Intrinsic fluorophores (source of autofluorescence)
- 2. Dyes
- 3. Fluorescent proteins

Inorganic fluorophores

especially

- 1. Lanthanides
- 2. Quantum dots

What sort of molecules are fluorescent? 1. Organic fluorophores

Chemical features:

- 1. Conjugation
- 2. Rigidity especially fused aromatic rings
- 3. Heteroatoms

Please rank these in order of fluorescence

What sort of molecules are fluorescent? 1. Endogenous organic fluorophores

Most common autofluorescent molecules:

Flavins, NADH, NADPH, elastin, collagen, lipofuscin

Avoiding autofluorescence:

choose dye emitting in red with big Stokes shift add quencher (Crystal violet) add reducing agent to react with autofluorescent molecules time-gate fluorescence

What sort of molecules are fluorescent? 2. Inorganic fluorophores

Curr Opin Chem Biol. 2010;14(2):247-54. Lanthanide-tagged proteins--an illuminating partnership. Allen KN, Imperiali B. Michalet X, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005 307(5709):538-44.

How good is a fluorophore?

1. Excitation and emission appropriate

background worse in UV + with small Stokes shift good match to filters on your microscope look at other fluorophores at same time

2. Bright

see small numbers of fluorophores, low self-quenching, high QY and absorbance

3. Stable to photobleaching

exciting light damages fluorophore

- 4. Non-toxic
- 5. Environment-insensitive (especially to pH)
- 6. Little non-specific binding
- 7. Small
- 8. Little blinking
- (9. Cost)

Alexa Fluor 488 vs Fluorescein Bleaching

2x Real Time

Alexa Fluor Dyes – Photostability

Fluorescein is the commonest dye but has poor photostability. Also consider Atto dyes (Sigma) and Dyomics dyes

Protecting the fluorescence signal -Antifade Reagents for fixed cells

Scavenge and prevent reactive oxygen species from forming.

For fixed cells: Home made: 0.3% p-phenylene-diamine (Sigma) or Propyl Gallate Vectashield: Proprietary, very effective all round, affects psf Dabco Prolong Gold[®]

+ Prolong Gold

Untreated

Antifade Reagents for Live Cells

Blinking of single molecule of Atto647N on DNA, Vogelsang Tinnefeld Ang Chem 2008

- Trolox is an antioxidant that can reduce bleaching compatible with live specimens water-soluble working conc. ~100 µM
- Ascorbic acid is an alternative antioxidant
- Depleting oxygen (especially used for some single molecule experiments) with Glucose Oxidase and Catalase greatly reduces bleaching.
- Can stop not only bleaching but also blinking

Microsecond! fluorescent measurements with Trolox + cysteamine

Oxygen helps stop triplet-state build-up BUT oxygen promotes photobleaching For rapid photon cycling-

- 1. leave oxygen in
- 2. add Trolox to further quench triplet state

3. include cysteamine (a thiol) to protect from singlet oxygen and hydroxyl radicals

Green/Red Alexa dye FRET on rapid folding protein

V. Munoz Nat Meth 2011 14

Multiplexing- four main colours

Overview

1. What kind of structures are fluorescent

2. How to make and target fluorescent probes

- 3. Fluorescent probes for cellular structure and function
- 4. Using light to control cells

Major bottleneck to using new probes is difficulty targeting them

fluorescent proteins easy to target

other probes hard to target

Antibodies for cellular imaging

Live cells

Label plasma membrane and secretory pathway Penetrate plasma membrane (microinjection, electroporation, pinosome lysis, streptolysin, cell permeable peptides, ester cage)

Get dynamics, avoid fixation artifacts

Fixed cells

Permeabilise

Still can give enormous amount of useful information

Not just antibodies for targeting

Other types of targeting agents:

Proteins (especially antibodies, but also transferrin, insulin, EGF etc.) Peptides (MHC class I pathway, proteasome function) RNA (mRNA, molecular beacons, aptamers, siRNA) DNA lipids, lipoproteins drugs

How to dye: it is easy

Overview

1. What kind of structures are fluorescent

2. How to make and target fluorescent probes

3. Fluorescent probes for cellular structure and function

4. Using light to control cells

Putting the signal in context: nuclear labelling

(follow DNA even when nucleus breaks down)

Fixed cells: Intercalate into DNA DAPI (well away from other channels Hoechst 33342

Live cells: histone H2B-GFP

Endoplasmic Reticulum

ER-Tracker[™] Blue-White DPX

antibody to calnexin

Brefeldin A-BODIPY® 558 conjugate

Live cells: ss-GFP-KDEL

Mitochondria

Fixed cells: anti-cytochrome oxidase subunit I Ab

Live cells: MitoTracker® Red/Green/Orange

CMTMRos

JC-1 (red J-aggregates at high conc., red to green depends on membrane potential)

Mitochondrial targeting sequence-GFP

Lysosomes

Fixed cells: anti-LAMP1

Live cells: LysoTracker® Red /Green (weakly basic amines can accumulate in lysosomes)

LysoSensor™ Yellow/Blue DND-160, LAMP1-GFP

Lipid Rafts

BODIPY® FL C5-ganglioside GM1

Fluorescent Cholera Toxin subunit B (CT-B)

Putting the signal in context: actin labelling

Fixed cells: phalloidin-dye

Live cells: Lifeact-GFP (17 aa peptide binding actin)

<u>Cytosol</u>

Show.

Live cells: CellTracker™ Green CMFDA Calcein, AM Qtracker GFP with nuclear export sequence

STATIS VALUES

The breakthrough of fluorescent proteins from jellyfish

Aequorea victoria Osamu Shimomura The breakthrough of fluorescent proteins for live cell imaging

GFP chromophore from Ser-Tyr-Gly

Link GFP sequence to gene of your favourite protein

GFP folds and becomes fluorescent

GFP lights up your favourite protein in cell 31

Fluorescent proteins are more than just labels

476 nm

433 nm

Arg/Lys-rich site

527 nm

kinase + ATP

phosphatase

433 nm

phosphotyrosine binding protein

CFP

а

YFP

Photoactivation/Photoswitching PA-GFP, Dronpa, Eos Reporting on environment Ca²⁺, phosphorylation, cAMP, cGMP, pH, neurotransmitters, voltage, cell cycle, redox Reporting on protein-protein interaction CFP/YFP FRET, split fluorescent proteins Modifying environment

Singlet oxygen generation, Channelrhodopsin

<u>Targeting</u> <u>advantage</u> to defined compartment, cell-type, developmental stage

Chromophores in switching

Sensing voltage with fluorescent protein

Mermaid FRET voltage-sensor by FP fusion to voltage-sensing phosphatase

Expressed in zebrafish heart Non-invasive testing of mutant phenotypes and drug cardiotoxicity. Tsutsui, Miyawaki J Physiol 2010

N.B. FRET sensor ratio crucial

best is YC2.60 cameleon: 600%, if <20% then lost in cellular noise

Small molecule fluorescent sensors

Metal ions: calcium, magnesium, zinc, sodium, potassium, chloride, mercury

pH (also dyes to conjugate to proteins, CyPher from GE, SNARF from Invitrogen)

Reactive oxygen species, nitric oxide Transmembrane potential

Why use small molecule rather than genetically-encoded probes?

1. No need to transfect

hard for some organisms and primary cells easier to titrate potential clinical applicatione.g. image-guided surgery

MMP-activated Cy5 peptide labels tumour (RY Tsien 2010)

2. Probes often brighter, with bigger signal to noise struggle to make GFP-based calcium reporter as good as fura-like dyes

3. Probes with entirely different fluorescent properties QD photostability, probes with long fluorescence lifetimes, photouncaging

4. Smaller

e.g. calcium conc. right next to pore of ion channel

How good is a fluorescent protein?

A. victoria GFP is good for jellyfish, but not great for cell biologists!

How good is a fluorescent protein?

A. victoria GFP is terrible! EGFP is OK, but there are now better...

- 1. Excitation and emission λ
- 2. Bright
- Stable to photobleaching
 Non-toxic
- 5. Environment-insensitive
- 6. Little non-specific binding
 7. Fast Maturation

good match to filters on your microscope look at other fluorophores at same time YQ X 3 Clover, YPet 2.5 x EGFP mRuby2 3x mCherry EBFP bad, mCherry and YPet good attach on right part of your protein all make H_2O_2 , FPs can transfer electrons especially to pH, chloride CyPet does not fold at 37° C, all need O₂ Photoactivatable FP did not work in ER fully monomeric, A206K non-dimerising Venus 2 min. Red FPs can start off green half-time ~15 min mCherry, 100 min TagRFP

You MUST worry about FP multimerization!

Tag multimerizing protein with FP and sometimes see fociare these real or caused by the tag?

ClpP-Venus 6 ClpX 6 ClpX

With hexameric barrel involved in

E. coli protein degradation, many commonly used FPs induce artifactual foci

(no cluster with Ab or SNAP-Tag) as well as affecting daughter cell inheritance of proteolysis ability mCherry, sfGFP, mYPet poor! mGFPmut3, Dronpa OK *D. Landgraf et al. Nature Meth 2012*

Problems with GFP in cells

 GFP with light can donate electrons to different acceptors (FMN, FAD, NAD⁺, cyt. c) GFP reddens after transfer: photobleaching and phototoxicity use DMEM lacking e⁻ acceptors
 (riboflavin or all vitamins) for less bleaching
 (HEK 293T happy for 1 week)
 effect for EGFP and PA-GFP, not RFPs
 Lukyanov Nat Meth 2009

 EGFP not good in secretory pathway mixed disulfide oligomers in ER and non-fluorescent in *E. coli* periplasm (superfolder GFP behaves fine) *Erik Snapp, Traffic 2011*

Figure 1 | Influence of cell medium on fluorescent protein photostability. Normalized bleaching curves for EGFP in live HEK293T cells maintained in DMEM, DMEM – Rf or DMEM – V. Error bars, s.d. (*n* = 20 cells).

Fluorescent RNA imaging

See single mRNA: MS2 mRNA stem-loops bound by MCP-YFP See product of translation: mRNA encodes CFP-SKL which goes to peroxisomes

<u>Spinach</u> RNA 60 nt aptamer binds cell-permeable fluorogenic dye Photostable. Used to label 5S RNA in HEK cells. *Samie Jaffrey Science 2011*

Overview

1. What kind of structures are fluorescent

2. How to make and target fluorescent probes

3. Fluorescent probes for cellular structure and function

4. Using light to control cells

Why use light to control biology?

Light control allows extreme temporal and spatial control.

Temporal controlgenes< chemicals < light</td>min-hrs-minμs-s

Spatial control chemicals / genes < light one or many cells 1 μm part of cell

(note micropipettes for precise small molecule delivery)

(often combine chemical/light control or gene/light control) optogenetics/chemogenetics

Limitations of light? \$\$\$\$ and usually data on one cell at a time

Controlling biology with light: light-gated ion channels

Channelrhodopsin from an alga, like rhodopsin, undergoes retinal isomerisation in response to light, and changes conformation, but opens a Na⁺ channel. This allows light to control membrane voltage and trigger neuron firing.

LOV domains react and switch conformation with light

LOV domains:

light, oxygen, voltage responders ones responding to blue light in bacteria, plants and fungi

Genetically-encoded photoactivation

Movie S6. Spelling "RAC" by Neutrophil Trajectories (Figure 4D).

- 1. Constitutively active Rac mutant
- 2. Optimise LOV-Rac junction,
- 3. knockout GTP hydrolysis and GAP/GNDI/GEF interactions
- K_d for PAK 2 μ M in dark, 200nM in light 10-fold ratio Interaction of Rac with PAK stimulates cell protrusion and migration.

K.Hahn et al. Nature Sept. 2009

Correlated Light Microscopy/ Electron Microscopy

MiniSOG (Shu, Tsien PLoS Biol 2011)

Light causes generation of singlet oxygen-> DAB polymerized-> binds OsO₄

106 aa monomer, engineered from Arabidopsis LOV domain

tested in cell-lines, worms and transgenic mice

Overcomes trade-off between thorough fixation and penetration of labeling reagent

(Also see APEX protein tag for DAB for EM staining, JD Martell et al. Nat Biotech 2012)

Conclusions

Choosing the right dye or fluorescent protein can make a big difference for:

sensitivity signal stability modification to molecule/cell function by size or multimerization

Fluorescent probes allow more than just following location:

reporting cellular events uncaging biomolecule function controlling interactions and ion flux

References

Fluorescence probes

Molecular Probes Handbook, free from Invitrogen. Principles of Fluorescence Spectroscopy 2nd edition, by Joseph R. Lakowicz.

Protein modification

Bioconjugate Techniques, 2nd Edition by Greg T. Hermanson. Chemical labeling strategies for cell biology, Marks KM, Nolan GP. Nat Methods. 2006 Aug;3(8):591-6.

Fluorescent proteins

(i) as labels: Nat Methods. 2012;9:1005-12. Improving

FRET dynamic range with bright green and red fluorescent proteins. Lam AJ et al.

Poster:

http://www.nature.com/nrm/posters/fluorescent/index.html (ii) as sensors: Designs and applications of fluorescent protein-based biosensors. Ibraheem A, Campbell RE.

Curr Opin Chem Biol 2010;14:30-6

49